
1
IAR Systems White Paper | The Developer’s Journey to a Secure Embedded System

ACCELERATE THE PATH TO
ISO 26262 CERTIFICATION

SHAWN PRESTRIDGE, IAR SYSTEMS

Functional safety needs to be an integral part of any automotive design. Functional safety can
be defined as the part of the overall automobile safety feature set that depends on predictable
automated protection, which operates in response to its inputs or failures. In other words, it’s
an automated way to protect the vehicle from faults, which could be human errors, or hardware
or software failures. The key component here is that the process must be automated.

The ISO 26262 certification path can be complex, and the automobile’s increasing number of
ECUs is not making it any easier.

To ensure proper functional safety, the ISO 26262 standard was developed. It dates back to
2011, but has been updated over the years, as you would expect. As is often the case with
standards, they can put some complex requirements on the software developer. The standard
applies to mainstream automobiles, with exceptions made for specialty vehicles. The spec
covers all aspects of product development, from the specification, to design, implementation,
integration, verification, and validation, all the way through to production.

According to the specification, “ISO 26262 is a risk-based safety standard, where the risk of
hazardous operational situations is qualitatively assessed and safety measures are defined to
avoid or control systematic failures and to detect or control random hardware failures, or
mitigate their effects.” The specification acknowledges that it’s impossible to reduce the risk to
zero. Hence, it requires that risks be qualitatively assessed and that measures be taken to
reduce them to as low as is reasonably practicable.

https://www.iso.org/standard/68383.html

2
IAR Systems White Paper | The Developer’s Journey to a Secure Embedded System

The ISO 26262 standard relies on the V-Model, which acts as a framework for matching
requirements (left side) with corresponding tests (right side) to provide traceability.

One of the important goals of ISO 26262 is to provide a risk-based approach for determining
risk classes, also referred to as automotive safety integrity levels (ASILs). The spec then uses
those ASILs to help determine what constitutes “acceptable risk.” It defines four ASILs, aptly
named A, B, C, and D. A represents of lowest degree of hazard, with D at the opposite end of
the spectrum. Components like rear lights require an ASIL-A grade, while systems like airbags,
anti-lock brakes, and power steering require an ASIL-D grade, as the risks associated with
their failure are the highest. In between are head lights and brake lights (ASIL-B) and cruise
control (ASIL-C).

A Lengthy Spec
The latest version of ISO 26262 consists of 12 parts:

1.	 Vocabulary
2.	 Management of functional safety
3.	 Concept phase
4.	 Product development at the system level
5.	 Product development at the hardware level
6.	 Product development at the software level
7.	 Production, operation, service and decommissioning
8.	 Supporting processes
9.	 Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analysis
10.	 Guidelines on ISO 26262
11.	 Guidelines on application of ISO 26262 to semiconductors
12.	 Adaptation of ISO 26262 for motorcycles

3
IAR Systems White Paper | The Developer’s Journey to a Secure Embedded System

We won’t go through each component here, but we’ll stick to
the parts that will help you accelerate your path to certification,
particularly the software aspects, also known as ISO-26262-
6. Pertaining to the software, ISO 26262 specifies the
following requirements for product development:

•	 the initiation of product development at the software level
•	 specifying the safety requirements
•	 the architectural design
•	 unit design, implementation, and testing
•	 integration and testing
•	 verification of the safety requirements

Where do you start if you want to ensure that you’re writing
your code in compliance with ISO 26262? The easy answer
is that you focus on code quality, which goes hand-in-hand
with security. For example, it’s important to test for artifacts
within your code. Artifacts are like maps that can be used to
trace the developmental process of any piece of code. The
artifacts show what’s been generated in the development
process, which could include mock-ups, design documents,
test matrices, prototypes, notes, data models, and diagrams.

Commercial tools are available to streamline the ISO 26262
certification process, including IAR Systems’ Embedded
Workbench, Functional Safety Edition.

Software developers should be able to analyze and know
the tools used in creating such software by looking at
the artifacts. Hence, the proper toolset is required. One
tool that should be on your radar is IAR Systems’
Embedded Workbench, Functional Safety Edition. Available
for most popular microprocessors, this special edition of
Embedded Workbench is certified by TÜV SÜD according
to the requirements of all relevant functional safety standards.
The certification validates the entire development processes,
as well as the delivered software.

The Safety Guide that’s included with the Functional Safety
version of Embedded Workbench has practical tips for
helping you certify your application. The topics include:

•	 System and environment considerations
	- How to manage language standards compliance, 		

	 language extensions, and subsets, potential tool 		
	 failures, device-specific support files, compatibility 		
	 between different versions of the same toolchain, 		
	 compatibility with other toolchains, and MCU self-		
	 check strategies

•	 Installation, commissioning, operation, and maintenance
•	 Setting up the build environment

	- Debug and release modes, build configurations 		
	 and options, stack depth considerations, linker 		
	 configuration, and add-on analysis tools

•	 Implementation and coding considerations
	- Optimization modes, integral type selection, floating-		

	 point arithmetic, functions, global symbols, const 		
	 and volatile, and pointers

•	 The C/C++ standard libraries

What differentiates the Functional Safety Edition is that IAR
is guaranteeing long-term product support and providing
validated service packs as the needs arise. In fact, the
guarantee is not time restricted in any way, and the company
is sharing renewed certificates for the product version for
as long as customers need it. This differs from most vendors
that typically limit support to a few years. The company also

https://www.iar.com/products/requirements/functional-safety/iar-embedded-workbench-for-arm-functional-safety/

4
IAR Systems White Paper | The Developer’s Journey to a Secure Embedded System

agrees to provide regular reports of known deviations and
problems. Single- or multiple-use licenses are available.

Note that there is a difference between being certified and
being compliant, and it likely will depend on who your
customer is as to which path you need to follow. Obviously,
you need to be compliant before you can be certified, but the
certification process is one that’s far more time consuming
as you are dealing with outside authorities.

A vendor can choose to adopt just portions of the standard
and be compliant, assuming those portions are all that’s
needed for that application. This is true for most safety-critical
applications, but we’ll stick to automotive here.

Ensuring that code is safe, secure, and reliable can be difficult.
You need to fulfill specific coding and design guidelines.
Applying a coding standard, such as MISRA, makes it easier
to verify your code against the safety standard guidelines.

As stated, ISO 26262, Part 6 defines the software methods
for achieving compliance with the standard, including the
modeling and coding guidelines recommended for all ASIL
levels. You can use a tool like Embedded Workbench to comply
with most of these guidelines for software written in C or C++.

Start with Static Analysis
Using the right tool for the right job is one of the keys to
success. For example, static-analysis tools are best used to
validate that the software conforms to the coding standards
set forth by the specification. While the main function of
these tools is to find serious programming errors, they are
capable of much more, particularly when it comes to ISO
26262 and the robustness that helps prevent common errors.

Static-analysis tools help find defects by working their
way through the entire program, searching for anomalies
and other defects. They can do this by running a
simulation with variables. The tools have the ability to
explore various execution paths. While it may not be
possible to explore every path, as many as possible is
recommended, especially as the more traditional
methods can be less successful.

Followed by Run-Time Tools
While static analysis is a useful way to spot the pitfalls in
your code, run-time analysis is just as critical. Looking for
failures throughout the system may seem like an arduous
task, but it’s a necessary one. And it gets more difficult as
OEMs attempt to combine more and more functions into
components and subsystems. Code must be run on each
embedded control unit (ECU) separately, with the results
coming back together at some point. Emulating every possible
scenario in order to find every possible bug is a lofty goal,
but likely unrealistic, particularly within a given time budget.

Time determinism is a key attribute here, as it deals with
necessary time constraints by synchronizing time-bases for
synchronized execution and support. It also detects timing
violations and prevents their propagation.

Coding with MISRA C Standards
One of the best ways to help aid in the compliance of ISO
26262 is to adhere to MISRA C standards. In a nutshell, that
would support the development of a system that’s safe,
secure, reliable, and portable. Note that MISRA (the Motor
Industry Software Reliability Association) is a consortium
formed by various players in the automotive industry.

MISRA C can automatically eliminate some of the more common
pitfalls that developers tend to fall into. In the end, when
combined with static analysis, it lets the developer focus his
testing time on the less obvious issues. The MISRA standards
can also remove undefined, and potentially risky, behaviors.

Proper Testing
While testing can be used simply to improve quality and
safety, it’s just as important to employ it to assess quality.
Just because a system passes a test doesn’t mean that it’s
ready for market. Using feedback loops, the developer can
improve traceability, coverage, and robustness through a
disciplined safety process. It’s important that testing not be
relegated to an after-thought. Rather, it should be a tool in
the developer’s arsenal, like any other.

https://misra.org.uk/

5
IAR Systems White Paper | The Developer’s Journey to a Secure Embedded System

When products are rolled out to end customers, if possible, a phased rollout is recommended.
While using early adopters as beta testers is not recommended, that’s sometimes an
unavoidable situation. Like it or not, there’s a chance that the first round of customers will pick
up on bugs that could not be simulated in the lab. The easiest fix is an over-the-air (OTA)
update, followed by a continuous series of updates.

Is Free Worth It?
Finally, we’d be remiss if we didn’t discuss some of the “free” offerings. Remember the line,
“you get what you pay for,” as it certainly applies here. And while the upfront cost may be free,
you may end up paying severely in terms of development time, and trying to figure out how to
get all these pieces to work in harmony.

Obviously that cost is harder to adjudicate, but it’s there. Partly because you’re taking away
your developer’s time from the ability to produce newer and better products, products that
have a higher value.

The bottom line is, are you going to pay the money upfront where the cost is fixed and you
know what it is, or are you going to pay it somewhere down the road where you really don’t
have any idea what the cost is? That can be troubling as you don’t know how long it’ll take
your development team to come to grips with all the different free solutions they’re trying to
cobble together.

