
10 Properties of Secure
Embedded Systems
Protecting Can’t-Fail Embedded
Systems from Tampering, Reverse
Engineering, and Other Cyber Attacks

www.windriver.com

http://www.windriver.com
http://www.windriver.com

When attacking an embedded system, it takes only
one vulnerability to lead to an exploit.

When tasked with securing an embedded system, you (the
defender) must be prepared to protect against every possible
vulnerability. Overlook a single opening and the attacker may find it,
take control, steal your secrets, and create an exploit for others to
use anytime, anywhere.

Worse yet, that same attacker may use an initial compromised
device to pivot from one exploited subsystem to another, causing
further damage to your network, mission, and reputation.

This white paper covers the most important security design
principles that, if adhered to, give you a fighting chance against any
attacker who seeks to gain unauthorized access, reverse engineer,
steal sensitive information, or otherwise tamper with your
embedded system.

It’s Not a Fair
Fight…

“When tasked
with securing an
embedded
system, you (the
defender) must
be prepared to
protect against
every possible
vulnerability.”

The beauty of these 10 principles is that they can be layered together into a cohesive set of
countermeasures that achieve a multiplicative effect, making device exploitation significantly
difficult and costly for the attacker.

Your applications, configurations, and data aren't
safe if they're not protected at rest. Period.

You can protect your applications and data at rest in one of two
ways:

1. Prevent the attacker from ever gaining access to this

information in the first place

2. Make it impossible for the information to be understood at all

Embedded devices are now distributed by the millions to
consumers around the world. Therefore, unless you can
guarantee that your system remains physically inaccessible
behind guns, gates, and (trusted) guards, preventing the
attacker from ever gaining access to your data and intellectual
property is an exceedingly tall order.
This leaves us with method two: Making it impossible to understand
the information at all.

Though there are many ways to obfuscate or otherwise garble your
data and applications to make them more difficult to understand,
most aren't worth the effort and are often trivially bypassed or
subverted.

When an attacker has access to your software or data, it's only a
matter of time before they figure out how your system works.
However, if your applications and data are encrypted with proven
cryptographic algorithms and the decryption key is not accessible
to the attacker, it's game over. At the very least, you have forced the
adversary to use a more intrusive method of attack to achieve their
objective.

Properly implemented, encryption at rest is designed to protect
the confidentiality of your sensitive data from physical access.
Encryption can also protect the integrity of the software
components on a device. For example, encrypted storage volumes
can prevent attackers from injecting malware, modifying
configurations, or disabling security features on a device.

Data at Rest
Protection

Using certified
and/or industry
standard crypto
algorithms such
as AES, RSA,
ECC, or SHA will
help protect your
data at rest and
prevent an
attacker from
gaining access –
so long as you
keep the secret
crypto keys out
of reach when
the system is
powered off (hint:
tamper-resistant
hardware),
during boot, and
throughout
runtime
operation.

Secure Boot

Your system isn't safe if you can't prove that, while
booting up, your code wasn’t manipulated, modified,
or replaced with an alternate, malicious version.

Yes, handing off control from the hardware to the software is a
complicated dance that any embedded system conducts to get up
and running. But that doesn't mean it's indecipherable.

Hundreds (maybe thousands) of vulnerabilities exist in system boot
sequences that, if left unprotected, can and will be exploited by a
would-be attacker to gain access to your software and compromise
applications and data. For example, boot attacks are the most
common method used to “root” popular mobile devices and enable
unauthorized applications and system modifications. A well-
engineered secure boot sequence helps protect against system
compromise during startup.
Many secure boot technologies exist including:

1. UEFI Secure Boot, free for many platforms, which takes static

root of trust measurements and provides validation of kernel
command line arguments.

2. Grub Secure Boot, which has options for validating kernel,
initramfs, and command line, and also integrates with UEFI
Secure Boot.

3. Intel TXT/ tboot, which can provide authentication and
encryption during a measured launch, and also prevents certain
advanced hardware attacks.

4. uboot, which leverages platform-specific bits (i.e., fuses) to
perform a verified boot using encryption and authentication.

5. Commercial products, such as Star Lab’s own Titanium Secure
Boot solution.

Many other forms of secure boot for SoCs leverage platform-
specific bits and perform verified or measured launches of
operating system code using encryption and authentication.

Whichever secure boot technology you are using, be sure to
implement a strong one like these to ensure your hardware
kicks off only the intended and authentic software instead of an
attacker’s malicious code.

SECURE BOOT
SEQUENCE

1. Encrypted at Rest

2. Measured Boot
 (unlock key material)

3. Decrypt OS

4. Secure at Runtime

https://www.linuxjournal.com/content/take-control-your-pc-uefi-secure-boot
https://ruderich.org/simon/notes/secure-boot-with-grub-and-signed-linux-and-initrd
https://software.intel.com/content/www/us/en/develop/articles/intel-trusted-execution-technology-intel-txt-enabling-guide.html
https://en.wikipedia.org/wiki/Das_U-Boot
https://www.starlab.io/titanium-product
https://www.starlab.io/titanium-product
https://www.linuxjournal.com/content/take-control-your-pc-uefi-secure-boot
https://ruderich.org/simon/notes/secure-boot-with-grub-and-signed-linux-and-initrd
https://software.intel.com/content/www/us/en/develop/articles/intel-trusted-execution-technology-intel-txt-enabling-guide.html
https://en.wikipedia.org/wiki/Das_U-Boot
https://www.starlab.io/titanium-product
https://www.starlab.io/titanium-product

Hardware Resource
Partitioning

If your software stack is allowed unconstrained
access to every hardware component on your
system, then an attacker can potentially leverage that
same access to catastrophic effect.

It is like building a boat without bulkheads – a single leak can
compromise the whole ship.

Constraining software workloads to particular hardware
components (CPU cores, cache, memory, devices, etc.) leads to
a cleaner, more straightforward system configuration. It also
happens to provide very important security properties.

Traditional embedded operating systems have limited protections
between processes and application/system dependencies, and
since the operating system kernel is similarly not separate from the
individual device driver services, the attack surface is large and
enables a single exploit to compromise the integrity of the entire
system.

An architecture in which components are isolated via strong,
hardware-enforced boundaries enables defense-in-depth,
especially if interfaces between separated components are
tightly controlled. Any vulnerabilities exploited in one application
remain constrained to that application, and thus cannot spill over
into other (isolated) components to disrupt the entire system.
Furthermore, strict partitioning and isolation can prevent co-
execution vulnerabilities, which is an enabling factor for exploit
families like Spectre and Meltdown.

Separating components via hardware partitioning, therefore
improves the overall resiliency of the system as one component can
no longer directly or indirectly affect another component.

Additionally, partitioning the system into discrete components
reduces the collective attack surface, and increases overall system
security by reducing and/or minimizing privilege escalation,
preventing resource starvation, & denial of service, mitigating side-
channel and/or timing attacks, and laying the groundwork for future
fault-tolerant application approaches.

Good security
practice requires
reasoning
through potential
attacks at every
level of the
system,
understanding
and questioning
design
assumptions,
and
implementing a
defense-in-depth
security posture.

https://meltdownattack.com/
https://meltdownattack.com/

Software Containerization
& Isolation

Just like one rotten apple can spoil the whole bunch,
one insecure piece of code can, if not properly
isolated, compromise the entire system.

This is possible because a vulnerability exploited in one piece of
code enables the attacker to run arbitrary commands with the same
set of privileges as that application – possibly writing to memory or
devices where other software components reside. Thus, an initial
exploit can quickly gain the attacker unrestricted access to the
entire system, or even worse, long-term persistence.

Containerization of code helps to mitigate such attacks,
preventing an exploit in one component from affecting another.

To mitigate the effects of software exploitation attacks, the defender
should containerize, sandbox, and isolate different system functions
into separate enclaves. This approach starts at the system
architecture stage – ensuring that applications and subcomponents
are well-defined and self-contained with clearly understood and
enforced boundaries. Next, data flows should be analyzed to
ensure that inter-component interactions are known and can be
controlled.

Containerization can be accomplished at multiple levels within the
software stack, including separate namespaces (i.e. Docker), virtual
machines, separation kernels, and/or hardware-enforced memory
spaces. When implemented correctly, even exploited software
remains constrained to just its process address space, VM, or
container thereby limiting the reach of an attacker and preventing
the unintended escalation of access across system components.

Software
applications will be
well-defined, self-
contained,
containerized, and
isolated:

• Process Address
Spaces

• Virtual Memory
• Docker
• Containers
• Virtualization
• Separation Kernel
• Hypervisor

https://www.docker.com/
https://en.wikipedia.org/wiki/Separation_kernel
https://www.docker.com/
https://en.wikipedia.org/wiki/Separation_kernel

Attack Surface
Reduction

The more code you deploy, the more opportunity an
attacker has to find an entry point into the system.

Recall that an attacker only has to exploit one vulnerability to be
successful, while the defender must protect against all
vulnerabilities. As such, every additional line of deployed code
potentially introduces software bugs that an attacker can
exploit for their nefarious reasons.

It's a losing battle.

The best approach then is to reduce the attack surface by removing
code and interfaces that are not absolutely required.

For example, instead of mindlessly deploying a monolithic Linux
distribution onto an embedded device, cut out the drivers, features
and code you don’t actually need. A zero-day attack on a graphics
card driver can’t be successful on a system that doesn’t include
that driver to begin with.

Similarly, even a known-vulnerable service cannot be exploited if
the service has been disabled or the interface is removed.

The more a
defender can do
to prevent an
exploit from
occurring in the
first place, the
better.
One of the best
ways to do that is
by reducing the
system’s attack
surface.

97% of risk management professionals stated that they believed
that unsecured IoT devices could be open to a “catastrophic”

security breach.

Least Privilege &
Mandatory Access Control

The principle of least privilege says that your
systems’ software components should only be
granted the minimal privileges necessary to do their
job, and nothing more.

Applications (and users/operators) should only have access to the
minimum set of interfaces and services necessary for their job.

Too often software developers and system engineers take the
shortcut – inadvertently (or even explicitly) granting excessive
privileges to applications, with an assumption of trusted operator
and/or application behavior. That assumption will be quickly
invalidated by the attacker.

Instead, embedded systems should be built using Mandatory
Access Controls (MAC). Unlike Discretionary Access Controls
(which can be modified at-will by users and administrators),
systems built upon Mandatory Access Control quantify access
grants and restriction policies during system design – controls that
are always enforced in the fielded device. As such, there is no user
or administrative way to bypass/disable the security controls within
the fielded device.

Even if an attacker is successful in compromising a
subcomponent of the system or gains root-level access, they
will not have a way to modify or disable security settings of the
device. When combined with least privilege, Mandatory Access
Controls greatly constrain the attacker’s freedom of maneuver, and
blocks their ability to modify, disable, or disrupt system services.

Properly implemented MAC policies do not interfere with normal
system operation, and they still allow the system to work as
designed and intended. The policies can also be updated in a
secure and controlled manner by the system implementer. However,
Mandatory Access Control intentionally prevents systems from
operating in unintended ways, which is a highly desirable property
in embedded computing.

If you need to
deploy that
graphics driver
for functionality,
then go for it.
Just be careful
not to allow
unauthorized
components to
access it if not
absolutely
necessary, a
principle known
as Least
Privilege &
Mandatory
Access Control.

https://en.wikipedia.org/wiki/Discretionary_access_control
https://en.wikipedia.org/wiki/Discretionary_access_control

Implicit Distrust & Secure
Communications

Communication received on your system from
external sources should be expressly denied until the
remote source has been authenticated.

In other words, a secure system doesn’t just let any other system
talk to it; it forces external systems to prove themselves. The
starting point for secure communication should be default-
deny.

More so, just as it is better to share your credit card information to
those you trust in a closed room where no one else is around to
hear it, your system should enforce secure communication even
after the other party has been authenticated.

That typically means data-in-transit will be encrypted.

Luckily both of these properties can be implemented using widely
used, easily accessible, and proven encryption communications
protocols like SSL and TLS with Identity and Certificate
management. Of course, anytime crypto is involved, it raises the
question of how you plan to protect those TLS keys and certificates
(hint: tamper-resistant hardware).

By implementing mutual authentication and encryption, you’ll
have more certainty that you are only communicating with
trusted entities (and not the attacker) and that nobody else can
eavesdrop on what is being communicated.

Once you are able to securely transmit information from one system
to another, you can focus on validating the information sent to
prevent malicious data input attacks.

“There are
updates that
happen every
single day about
potential security
exposures. We
have a team here
at TGCS that
focuses on that;
we partner with
Wind River to
make sure that
the known risks
are identified and
that we respond
quickly for our
retailers.”

—Gregg Margosian,
 COO, Toshiba

98% of all IoT device traffic—including medical
device traffic—is left unencrypted.

https://www.websecurity.digicert.com/security-topics/what-is-ssl-tls-https
https://www.websecurity.digicert.com/security-topics/what-is-ssl-tls-https

Data Input
Validation

A secure software architecture does not make
assumptions about the acceptability of a given input
and will validate the format and content of that input
before allowing it to be processed by the rest of the
system.

Data entering a system via any interface can become a vector for
attack – exploiting software vulnerabilities to gain unauthorized
access or corrupting system/application memory to create a denial
of service.

In other words, inputs from a variety of external sources such
as sensors, radios, networks, etc. should be subject to data
input validation before use.

Additional vetting of user input (where user means an actual human
user, a peripheral user, or a machine operator) is required. But all
devices should inspect the conformance of messages to a
prescribed data standard as they are passed from device to device.

Furthermore, because any component of the system could become
compromised at any point, and thus any message may be
maliciously crafted and sent by an adversary, a secure software
architecture operates on the principle of mutual distrust.
Components within the system must prove their trustworthiness
through a continuous (or at least frequent) authentication step.
Furthermore, authentication must expire periodically and be
reaffirmed.

Device-to-device authentication is often enforced during network
formation and at random times thereafter. Message signing and
verification are typically included in all messages between
authenticated devices.

Validating data before use helps to ensure that external inputs
cannot unintentionally interrupt or maliciously exploit system
functionality leading to compromise of the system.

“Many
developers fail
to imagine how a
malicious
attacker may
intentionally craft
malformed inputs
that are
designed to
cause the
software
to malfunction.”

The majority of malicious data input manipulation attacks target known vulnerabilities in application
software and common libraries, which leads us to Secure Software Development practices.

Secure Development, Build
Options & System Configuration

Adding some security features is as simple as
configuring your build options correctly.

You’ve probably heard of a buffer overflow attack. It’s a common
attack aimed at overwriting memory regions with malicious code.
Many compilers, by simply configuring them correctly, can now
identify whether such an attack is possible by analyzing your
code long before it’s deployed.

Of course, other build options can be set to warn you (or error out)
on many types of potential security issues and provide security
enhancements such as:

1. Detection of signed/unsigned conversions

2. Warning for uses of format functions that represent possible

security problems

3. Take advantage of 64-bit address space layout randomization

4. Compiling code with unintended return addresses

5. Mitigating variants of Spectre

6. Defeating stack smashing attacks

7. Protecting the stack and heap against code execution

8. Enabling code instrumentation of control-flow transfers

9. And many more…

Even better, if you have the ability to specify the programming
language for your system, you can eliminate entire classes of
software vulnerability. For example, the popular Rust programming
language can eliminate memory-safety and type-safety
programming concerns.

Secure software build options and system configuration to
validated standards are low effort, bare minimum requirements
that go a long way toward preventing attackers from driving
circles around your other cyber defenses.

By following
defensive coding
practices, using
secure build
options, and
configuring the
end system for
maximum
security
(depending upon
your security
requirements),
you can
significantly
decrease the
number of
possible attacks
that can
compromise one
or more parts of
your system.

https://www.imperva.com/learn/application-security/buffer-overflow/%22%20%5Cl%20%22:~:text=What%20is%20a%20Buffer%20Overflow%20Attack,files%20or%20exposes%20private%20information.
https://security.stackexchange.com/questions/24444/what-is-the-most-hardened-set-of-options-for-gcc-compiling-c-c
https://www.imperva.com/learn/application-security/buffer-overflow/%22%20%5Cl%20%22:~:text=What%20is%20a%20Buffer%20Overflow%20Attack,files%20or%20exposes%20private%20information.
https://security.stackexchange.com/questions/24444/what-is-the-most-hardened-set-of-options-for-gcc-compiling-c-c

Integrity Monitoring
& Auditing

You can’t take action against an attacker if you don’t
know when your system is being attacked.

Integrity monitoring and auditing are important techniques for
knowing when a device is being attacked and/or whether it has
been compromised. These warnings give you the potential to stop
an attacker before it is too late, or at least learn how they exploited
your system and what they were able to accomplish after the fact.

Typical techniques include network and OS-level anomaly
detection, system log monitoring, and scanning for known malware.
They allow the system operator to recognize when some portion of
the system may be compromised and take action against the
attacker, revoke trust accordingly, or both.

Furthermore, auditing is a requirement of many compliance
regulations as the techniques help organizations detect
unauthorized modifications to important files, data, or other aspects
of your system. HIPAA, NIST, FISMA, NERC, and PCI all require or
recommend integrity monitoring and auditing for critical
applications and data on distributed systems.

Properly implemented, auditing and monitoring allow you to
know when you’ve been attacked, help quantify the damage,
and enable you to recover more quickly – preventing lost time,
revenue, and damage to your reputation.

Wind River is a global leader in delivering software for the intelligent edge. Its
comprehensive portfolio is supported by world-class professional services and support
and a broad partner ecosystem. Wind River is accelerating digital transformation of
critical infrastructure systems that demand the highest levels of safety, security, and
reliability.

© 2020 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River
Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River
Systems, Inc. Rev. 07/2020

Our platforms
serve as a
trusted
foundation so
you can innovate
securely and
protect your
device against
current and
future threats.

Our technology is in
more than 2 billion
devices throughout
the world.

Unfortunately, there’s no one security property to rule
them all.

There’s no one tip or trick or technology or technique that can
immediately and permanently prevent an attacker from
compromising your system. It takes a combination of many
techniques to do that.

Start with these ten properties in order to build security into the
design, implementation, and operation of your embedded system:

1. Encrypt sensitive applications and data.

2. Ensure your firmware, OS, and config settings are authentic

before use.

3. Separate system functions into distinct enclaves.

4. Sandbox exploits and prevent attackers from expanding their

reach.

5. Reduce the amount of code and interfaces that an attacker will

have the opportunity to exploit.

6. Ensure software components can only do what they were

intended to do, and nothing more.

7. Secure data in transit and expressly deny external

communication unless authenticated.

8. Do not implicitly trust data received from untrusted sources.

9. Ensure software applications are compiled and configured with

all available security options enabled and enforced.

10. Detect and take action that protects the system against relevant

security events.

If all of these properties are in place, implemented properly on
your system, you’ll have a fighting chance against any attacker
who seek to exploit your system, steal your IP, or impact your
brand reputation.

No One Property to
Rule Them All

10 Properties of Secure
Embedded Systems

Data at Rest Protection

Authenticated and/or
Secure Boot

Hardware Resource
Partitioning

Containerization and
Isolation

Attack Surface Reduction

Least Privilege &
Mandatory Access Control

Implicit Distrust & Secure
Communications

Data Input Validation

Secure Development, Build
Options, and OS Config

Integrity Monitoring and
Auditing

1

2

3

4

5

6

7

8

9

10

Contact us if you are interested in learning how these ten properties can be applied to your use
case and what technologies Star Lab can bring to quickly and easily meet your security
requirements and protect your system against the full spectrum of reverse engineering and cyber-
attacks.

http://www.starlab.io/contact
http://www.starlab.io/contact

	When attacking an embedded system, it takes only one vulnerability to lead to an exploit.
	Your applications, configurations, and data aren't safe if they're not protected at rest. Period.
	Your system isn't safe if you can't prove that, while booting up, your code wasn’t manipulated, modified, or replaced with an alternate, malicious version.
	If your software stack is allowed unconstrained access to every hardware component on your system, then an attacker can potentially leverage that same access to catastrophic effect.
	Just like one rotten apple can spoil the whole bunch, one insecure piece of code can, if not properly isolated, compromise the entire system.
	The more code you deploy, the more opportunity an attacker has to find an entry point into the system.
	The principle of least privilege says that your systems’ software components should only be granted the minimal privileges necessary to do their job, and nothing more.
	Communication received on your system from external sources should be expressly denied until the remote source has been authenticated.
	A secure software architecture does not make assumptions about the acceptability of a given input and will validate the format and content of that input before allowing it to be processed by the rest of the system.
	Adding some security features is as simple as configuring your build options correctly.
	You can’t take action against an attacker if you don’t know when your system is being attacked.
	Unfortunately, there’s no one security property to rule them all.

