
Ease the Heartache of Medical
Device Software Certification

Achieving Cost-effective Compliance with IEC
62304 - Amendment 1:2015

www.ldra.com

© LDRA Ltd. This document is property of LDRA Ltd. Its contents cannot be reproduced, disclosed or utilised without company approval.

LDRA Ltd LDRA tool suite and IEC 62304 Technical Briefing1

Software Technology

Technical Briefing

http://www.ldra.com

Background

Given that the EU1 and FDA2 definitions of what constitutes a medical device encompass a large majority of
medical products other than drugs, it is small wonder that medical device software now permeates a huge
range of diagnostic and delivery systems. The reliability of the embedded software used in these devices
and the risk associated with it has been an ever-increasing concern as that software becomes ever more
prevalent.

On June 15, 2015, the International Electrotechnical Commission, IEC, published Amendment 1:2015 to the
IEC 62304 standard “Medical device software – software life cycle processes”3 as their latest response to
that concern. The set of processes, activities, and tasks described in this standard established a common
framework for medical device software life cycle processes.

In practice, for all but the most trivial applications compliance with IEC 62304 can only be demonstrated
efficiently with a comprehensive suite of automated tools. This document outlines the key software
development and verification process of the standard, showing how automation minimizes their cost and
provides a sound foundation for effective maintenance after product launch.

Classification

One of the more significant changes concerns the new risk-based approach to the safety classification
of medical device software. The previous concept was based exclusively on the severity of the resulting
harm. Downgrading of the safety classification of medical device software from C to B or B to A used to
be possible by adopting hardware-based risk mitigation measures external to the software. The new
amendment now replaces this concept with safety classification as shown in a decision tree (Figure 1).

1 “Directive 2007/47/ec of the European parliament and of the council”. Eur-lex Europa. 5 September 2007.
2 https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/Overview/
3 IEC 62304:2006/AMD1:2015 Amendment 1 - Medical device software - Software life cycle processes

LDRA Ltd LDRA tool suite and IEC 62304 Technical Briefing2

Figure 1: Safety classification according to IEC 62304:2006 +AMD1:2015

Class C (by default)

Can a
HAZARDOUS SITUATION

arise from a failure of
the software?

Yes

Evaluate e�ectiveness of RISK
CONTROL measures external

to the software

Does
failure of the software
result in unacceptable

RISK?
No

What severity
of injury is
possible?

Non SERIOUS INJURY

SERIOUS INJURY/death

Class A Class B Class C

http://eur_lex.europa.eu/LexUriServ/LexUriServ.do%3Furi%3DOJ:L:2007:247:0021:0055:en:PDF

The three classes defined in the standard range from class A – “The software system cannot contribute to a
hazardous situation” - though to class C - “The software system can contribute to a hazardous situation …
and the resulting possible harm is death or serious injury.”

Partitioning of software items

The classification assigned to any medical device software has a tremendous impact on the code
development process. It is therefore in the interests of medical device manufacturers to invest the effort
to get it right the first time, minimizing unnecessary overhead by resisting over classification, but also
avoiding expensive and time-consuming rework resulting from under classification.

IEC 62304:2006 +AMD1:2015 helps to minimize development overhead by permitting software items to
be segregated. In doing so, it requires that “The software ARCHITECTURE should promote segregation
of software items that are required for safe operation and should describe the methods used to ensure
effective segregation of those SOFTWARE ITEMS,” and permits “any mechanism that prevents on
SOFTWARE ITEM negatively affecting another.”

The standard uses an example where a software system has been designated Class C. That system can be
segregated into one software item to deal with functionality of limited safety implications (software item
X), and another to handle highly safety critical aspects of the system (software item Y).

That principle can be repeated in a hierarchical manner, such that software item Y can itself be segregated,
and so on – always on the basis that no segregated software item can negatively affect another. Software
items that are divided no further are defined as software units.

In practice, any company developing medical device software will carry out verification, integration and
system testing on all software regardless of the safety classification, but the depth to which each of those
activities is performed varies considerably.

For example, subclass 5.4.2 of the standard states that “The MANUFACTURER shall document a design
with enough detail to allow correct implementation of each SOFTWARE UNIT” applies only to Class C code.
In other words, that level of design documentation is not obligatory for Class A or Class B software.

Clause 5. Software Development PROCESS

The LDRA tool suite has been shown to ease the path to compliance both with IEC 62304 and with
functional safety standards in other safety critical sectors by automating both the analysis of the code
from a software quality perspective, and the required validation and verification work. Equally important,
the tool suite provides traceability throughout the life-cycle, complete with artefacts to provide evidence to
both internal and external auditors.

The V diagram in Figure 2 illustrates how the LDRA tool suite can help through the software development
process described by IEC 62304. The tools also provide critical assistance through the software
maintenance process (clause 6) and the risk management process (clause 7). Clause 5 of IEC 62304 details
the software development process through eight stages ending in release.

Sub-clause 5.1 Software Development Planning outlines the first objective in the software development
process, which is to plan the tasks needed for development of the software in order to reduce risks and
communicate procedures and goals to members of the development team.

LDRA Ltd LDRA tool suite and IEC 62304 Technical Briefing3

The foundations for an efficient development cycle can be established by using tools that can facilitate
structured requirements definition, such that those requirements can be confirmed as met by means of
automated document (or “artefact”) generation.

The preparation of a mechanism to demonstrate that the requirements have been met will involve the
development of detailed plans. A prominent example would be the software verification plan to include
tasks to be performed during software verification and their assignment to specific resources.

Software Requirements Analysis (Sub-clause 5.2) involves deriving and documenting the software
requirements based on the system requirements.

Achieving a format that lends itself to bi-directional traceability will help to achieve compliance with the
standard. Bigger projects, perhaps with contributors in geographically diverse locations, are likely to
benefit from an application lifecycle management tool such as IBM® Rational® DOORS®4, or Siemens®

Polarion® PLM®5 . Smaller projects can cope admirably with carefully worded Microsoft® Word® or
Microsoft® Excel® documents, written to facilitate links up and down the development process model.

Figure 2: Mapping the capabilities of the LDRA tool suite to the guidelines of IEC 62304:2006 +AMD1:2015

This bi-directional traceability would be easily achieved in an ideal world. But most projects suffer from
unexpected changes of requirement imposed by a customer. What is then impacted? Which requirements
need re-writing? What elements of the code design? What code needs to be revised? And which parts of
the software will require re-testing?

LDRA Ltd LDRA tool suite and IEC 62304 Technical Briefing4

 4 http://www-03.ibm.com/software/products/en/ratidoor

 5 https://polarion.plm.automation.siemens.com/

A requirements traceability tool alleviates such concerns by automatically maintaining the connections
between the requirements, development, and testing artefacts and activities. Any changes in the
associated documents or software code are automatically highlighted such that any tests required to be
revisited can be dealt with accordingly (Figure 3).

Software Architectural Design (Sub-clause 5.3) requires the manufacturer to define the major structural
components of the software, their externally visible properties, and the relationships between them. Any
software component behaviour that can affect other components should be described in the software
architecture, such that all software requirements can be implemented by the specified software items. This
is generally verified by technical evaluation.

Figure 3: Automating requirements traceability with the TBmanager component of the LDRA tool suite

Developing the architecture means defining the interfaces between the software items that will implement
the requirements. Any third-party software integration must be in accordance with Sub-clause 4.4 ,
“Legacy Software”.

If a model-based approach is taken to software architectural design - for example, using MathWorks®

Simulink®6 , IBM® Rational® Rhapsody®7 , or ANSYS® SCADE8 then the LDRA tool suite’s integration with
the chosen modelling tools will make for seamless analysis of generated code and ensure traceability to
the models.

Software Detailed Design (Sub-clause 5.4) involves the specification of algorithms, data representations,
and interfaces between different software units and data structures to implement the verified
requirements and architecture. Because implementation depends on detailed design, it is necessary to
verify the detailed design before the activity is complete, generally by means of a technical evaluation of
the detailed design as a whole, and of the verification of each software unit and its interfaces.

Later in the development cycle, the LDRA tool suite can help by generating graphical artefacts suited to the
review of the implemented design by means of walkthroughs or inspections. One approach is to prototype
the software architecture in an appropriate programming language, which can also help to find any
anomalies in the design. Graphical artefacts like call graphs and flow graphs are well suited for use in the
review of the implemented design by visual inspection.

LDRA Ltd LDRA tool suite and IEC 62304 Technical Briefing5

 6 https://uk.mathworks.com/products/simulink.html
 7 http://www-03.ibm.com/software/products/en/ratirhapfami
 8 http://www.ansys.com/products/embedded-software/ansys-scade-suite

Software Unit Implementation and Verification (Sub-clause 5.5) involves the translation of the detailed
design into source code. To consistently achieve the desirable code characteristics, coding standards
should be used to specify a preferred coding style, aid understandability, apply language usage rules
or restrictions, and manage complexity. The code for each unit should be verified using a static analysis
tool to ensure that it complies in a timely and cost-effective manner.

Verification tools such as the TBvision component of the LDRA tool suite largely offer support for a range
of coding standards such as MISRA C and C++, JSF++ AV, HIS, CERT C, and CWE. The better tools will
be able to confirm adherence to a very high percentage of the rules dictated by each standard, and will
also support the creation of, and adherence to, in-house standards from both user-defined and industry
standard rule sets.

IEC 62304 also requires strategies, methods, and procedures for verifying each software unit. Amongst
the acceptance criteria are considerations such as the verification of the proper event sequence, data
and control flow, fault handling, memory management and initialization of variables, memory overflow
detection and checking of all software boundary conditions.

The TBrun® unit test component of the LDRA tool suite provide a graphical user interface for unit test
specification which is used to create tests according to the defined specification and to present a list of
all defined test cases with appropriate pass/fail status, requiring a minimum of specialist knowledge.
By extending the process to the automatic generation of test vectors, the tool provides a straightforward
means to analyse boundary values without creating each test case manually. Test sequences and
test cases are retained so that they can be repeated (“regression tested”; Figure 4), and the results
compared with those generated when they were first created.

Thorough verification also requires static and dynamic data and control flow analysis. Static data flow
analysis produces a cross reference table of variables, which documents their type, and where they are
utilized within the source file(s) or system under test. It also provides details of data flow anomalies,
procedure interface analysis and data flow standards violations.

Dynamic data flow analysis builds on that accumulated knowledge, mapping coverage information
onto each variable entry in the table for current and combined datasets and populating flow graphs to
illustrate the control flow of the unit under test.

LDRA Ltd LDRA tool suite and IEC 62304 Technical Briefing6

Figure 4: “Regression Testing” – Re-running unit tests to show that the functionality they
describe still holds true, using TBmanager and TBrun components of the LDRA tool suite

LDRA Ltd LDRA tool suite and IEC 62304 Technical Briefing7

Software Integration and Integration Testing (Sub-clause 5.6) focuses on the transfer of data and
control across a software module’s internal interfaces and external interfaces such as those associated
with medical device hardware, operating systems, and third party software applications and libraries.
This activity requires the manufacturer to plan and execute integration of software units into ever
larger aggregated software items, ultimately verifying that the resulting integrated system behaves as
intended. Integration testing can also be used to demonstrate program behaviour at the boundaries
of its input and output domains and confirms program responses to invalid, unexpected, and special
inputs.

To show which parts of the code base have been exercised during testing, the LDRA tool suite has the
capability to perform dynamic structural coverage analysis, both at system test level and at unit test
level. Mechanisms for structural coverage such as statement, branch, condition, procedure/function
call, and data flow coverage vary in intensity, and so are specified by the standard depending on
classification.

A common approach is to operate unit and system test in tandem, so that (for instance) coverage can
be generated for most of the source code through a dynamic system test, and complemented using unit
tests to exercise such as defensive code. It is advisable to re-run (or “regression test”) these test cases
as a matter of course and perhaps automatically, to ensure that any changed code has not affected
proven functionality elsewhere.

Software System Testing (Sub-clause 5.7) requires the manufacturer to verify that the requirements
for the software have been successfully implemented in the system as it will be deployed, and that the
performance of the program is as specified.

Clause 6. Software Maintenance PROCESS

With the advent of the connected device and the Internet of Things, system maintenance takes on a new
significance. For any connected systems, requirements don’t just change in an orderly manner during
development. They change without warning - whenever some smart Alec finds a new vulnerability,
develops a new hack, compromises the system. And they keep on changing throughout the lifetime of
the device.

For that reason, the ability of next-generation automated management and requirements traceability
tools and techniques to create relationships between requirements, code, static and dynamic analysis
results, and unit- and system-level tests is especially valuable for connected systems. Linking these
elements already enables the entire software development cycle to become traceable, making it easy
for teams to identify problems and implement solutions faster and more cost effectively. But they are
perhaps even more important after product release, presenting a vital competitive advantage in the
ability to respond quickly and effectively whenever security is compromised.

Many software modifications will require changes to the existing software functionality – perhaps with
regards to additional utilities in the software. In such circumstances, it is important to ensure that any
changes made or additions to the software do not adversely affect the existing code.

The LDRA TBmanager® component of the LDRA tool suite helps alleviate this concern by automatically
maintaining the connections between the requirements, development, and testing artefacts and
activities – not just during development, but onwards into deployment and the maintenance phase.

IEC 62304 with its many sections, clauses and sub-clauses may at first seem intimidating. However, once
broken down into digestible pieces, its principles offer sound guidance in the establishment of a high
quality software development process, and a sound foundation for subsequent product maitenance.
Such a process is paramount for the assurance of true reliability and quality—and above all the safety
and effectiveness of medical devices. When used with a complementary and comprehensive suite of
tools for analysis and testing, it can smooth the way for development teams to work together to
effectively develop and maintain large projects with confidence in their quality.

Figure 5: Showing functions requiring retest with the TBmanager component of the LDRA tool suite

Figure 5 shows a display from the TBmanager requirements traceability component of the LDRA tool suite.
In this example, a system has been subject to a change request for the “Add products” requirement.
Those parts of the system which are potentially affected by the change are easily identified by means of a
red dot, whereas unaffected functions carry a green dot

As shown in the illustration, there is a test case file (tcf) associated with each of four low-level
requirements – “add”, “display”, “too many” and “check against not null”. Those files retain the test
vectors associated each of these low level requirements, meaning that they can all be re-run at the touch
of a button and the code’s functionality confirmed.

Conclusion

A software functional safety standard such as that prescribed by IEC 62304 with its many sections,clauses
and sub-clauses may at first seem intimidating. However, once broken down into digestible pieces,
its guiding principles offer sound guidance in the establishment of a high quality software development
process. Such a process is paramount for the assurance of true reliability and quality—and above all the
safety and effectiveness of medical devices.

The increasing demand for the connectivity of medical devices places a new emphasis on the need to
respond quickly and effectively to vulnerabilities discovered or compromised after product launch,
demanding that the high standards of the development process must be upheld not only leading up to
initial product release but into maintenance and beyond.

The “best practise” guidance given by the standard is therefore something to be embraced, not feared.
When complemented by a comprehensive suite of tools for analysis and testing, it can smooth the way
for development teams to work together to effectively develop and maintain even large projects with
confidence in their quality.

LDRA Ltd LDRA tool suite and IEC 62304 Technical Briefing8

LD
R

A
 tool suite and IEC62304 Technical B

riefing v2 04/18

www.ldra.com

LDRA UK & Worldwide
Portside, Monks Ferry,

Wirral, CH41 5LH
Tel: +44 (0)151 649 9300

e-mail: info@ldra.com

LDRA Technology Pvt. Ltd.
Unit No B-3, 3rd Floor Tower B,

 Golden Enclave, HAL Airport Road,
 Bengaluru

 560017
India

Tel: +91 80 4080 8707
e-mail: india@ldra.com

LDRA Technology Inc.
2540 King Arthur Blvd, Suite 228,

Lewisville, Texas 75056
United States

 Tel: +1 (855) 855 5372
e-mail: info@ldra.com

