
Background
Virtualization technology, whereby multiple operating systems
can be run on shared hardware, is extremely well understood if
somewhat inefficient in its use of resources. Just a few decades
ago, everyone used virtual machines (VM) to host and manage the
infrastructure. More recently, industries have shifted towards using
containers and their associated infrastructure, including such as
Docker and Kubernetes.

Containers try to achieve the same concept as virtual machines
but eliminate duplication of effort between machines. Containers
are easy to run on development machines and the deployment
process itself is also much simpler since one just uploads pre-
built containers to a container repository and production systems
can pull the updated version. The container-based approach
has its downsides. The software has to be adapted for usage in
containers (containerized), and this can get tricky, especially with
legacy codebases. Containers have many more configurations for
resource allocation and interoperability capabilities, so it is quite
easy to misconfigure them.

The next logical step in the progression from VMs to containers
is unikernels, which try to push the concepts of containers
even further.

Unikernels are effectively a set of pre-built binary libraries.
Unikernels do not handle resource allocation. The hypervisor
handles direct hardware interoperation. The unikernel architecture
concept aims to deliver the security strengths of VM level

The Opportunity For Unikernels In Mission Critical Systems

partitioning with the speed and footprint size benefits attributed to
containers. While this diagram shows a general approach, the use
of the LynxSecure Separation Kernel hypervisor removes use of an
underlying HostOS, a proven point of vulnerability.

Unikernels have even less overhead than containers and are
more streamlined giving the potential for enhanced performance.
Furthermore, by eliminating the use of a multi-user, multiple
address space kernel, security is drastically improved.

Unikernels are not new. There are, however, a number of issues
associated with unikernels which have limited their applications
until now. These include;
• Debugging. Since a unikernel has no OS running whatsoever,

the approach of directly connecting to its shell and investigating
does not work

• Producing unikernel images is complicated and requires deep
knowledge on the subject

• Current application frameworks have to adapt and produce
documentation on usage in unikernels

• The lack of a safety certifiable/certified unikernel for mission
critical applications

Introducing LynxElement™; The unikernel from Lynx Software
Technologies
Lynx has taken the approach of basing its unikernel product,
LynxElement, on its commercially proven LynxOS-178 real time
operating system. There is a focus on maintaining compatibility
wherever possible between the unikernel and the standalone
LynxOS-178 product to enable customers to freely transport
applications between each environment. More specifically FACE
and POSIX APIs are supported.

Host OS

HW

Hypervisor

Virtual Machines

App
A

Libs
runtime

Guest
OS

Libs
runtime

Guest
OS

App
B

App
C

Host OS

HW

Libs & Runtime

Containers

App
A

App
B

App
C

Host OS

HW

Hypervisor

Unikernels

App
A

Libs
runtime

Libs
runtime

Libs
runtime

App
B

App
C

Lynx Software
Technologies, Inc.
855 Embedded Way
San Jose, CA 95138-1018
+1 (800) 255-5969
+1 (408) 979-3900
+1 (408) 9793-920 fax
inside@lynx.com
www.lynx.com

Lynx Software
Technologies UK
400 Thames Valley Park Drive
Thames Valley Park
Reading, RG6 1PT
United Kingdom
+44 (0) 118 965 3827
+44 (0) 118 965 3840 fax

Lynx Software
Technologies France
38 Avenue Pierre Curie
78210 Saint-Cyr-l’École
France
+33 (0) 1 30 85 06 00
+33 (0) 130 85 06 06 fax

©2022 Lynx Software Technologies, Inc.
Lynx Software Technologies and the

Lynx Software Technologies logo are trademarks, and
LynxOS and BlueCat are registered

trademarks of Lynx Software Technologies, Inc.
Linux is a registered trademark of Linus Torvalds.

All other trademarks are the trademarks and registered
trademarks of their respective owners.

All rights reserved. Printed in the USA.

LynxElement runs on LynxSecure. Multiple unikernels can share
a CPU core. All applications run in user mode. This is a major
advantage when compared to operating systems that use kernel
mode. Kernel mode (also referred to as privileged mode) provides
a program direct and unrestricted access to all system resources.
Software in user mode is is not allowed to access system
resources directly. The Lynx filesystem, LynxFS, is supported. It also
includes a thread-based scheduler, more specifically a priority-
preemptive scheduler with POSIX semantics. Floating point is
supported in the unikernel.

The networking stack for LynxElement supports two types
of drivers
• Drivers for physical devices (Serial, Ethernet)
• Virtual drivers for serial ports and Ethernet

As mentioned previously, the driver model is compatible with
LynxOS-178, which enables driver APIs to be preserved. There is
no dynamic device driver support. This eliminates it as an attack
vector. Instead, all drivers are linked statically.

LynxElement is initially offered for Intel and Arm architectures.

From an application development perspective, Lynx provides
a Linux-based cross development that incorporates a GCC 11
compiler. C/C++ run-times are supported, with uClibC++
as the C++ run-time support.

LynxElement is provided as part of the LYNX MOSA.ic portfolio
of products.

Example Use Case
The initial interest for LynxElement is centered on security since
a) This approach drastically reduces the attack surface
b) These types of applications do not demand guaranteed

timing requirements and safety certification artifacts

As an example, LynxElement can be used to run security
components like IDS and VPNs. Statistical anomaly detectors can
be deployed by an Enterprise on networks to monitor IP and 1553
traffic. Use of a data diode and filter on the unikernel would enable
a customer to replace a Linux VM, which saves memory space and
drastically reduces the attack space.

Summary
Lynx certainly believes that we are entering the time where

unikernels are ready for broader deployment. Lynx’s announcement
of LynxElement the industry’s first commercial unikernel, provides
for compatibility with POSIX interfaces and is founded on
technology with a proven safety pedigree. Ultimately this means
cost and project risk reductions for systems that need to be taken
through certification standards such as DO-178C DALA, ISO26262
and IEC61508.

This technology offers a number of benefits to customers including
 • Increased system density • Better security
 • Improved performance • Smaller memory footprint

1.800.255.5969

Core0

IDM
Surrogate

ZCU102 Development Board

Core1 Core2 Core3

Linux Guest

Converter

Linux Guest

Statistical
Anomaly
Detector

LynxElement

Statistical
Anomaly
Detector

LynxElement

Virt NIC(s)

VPN

LynxElement

Gateway

Linux Guest
BusCop
(PCIe)

BusCop

LynxSecure (Hypervisor)

Ethernet

Virt NIC(s)

Ethernet
Network

MIL-STD-1553B
Network

Virt NIC(s) Virt NIC(s)

Virt NIC(s)

Virt NIC(s)

POSIX
Thread

Supervisor Mode

POSIX and Lynx Proprietary Libraries

POSIX
Thread

POSIX
Thread

POSIX
Thread

LynxElement and TCP/IP Stack (library)

CPU Support
Package

Board Support
Package

Static Device
Drivers

PCI
DRM

Micro-processor Hardware PCI Controller

H
ar

d
w

ar
e

Sy
st

e
m

 S
o

ft
w

ar
e

A
p

p
lil

ca
ti

o
n

 S
o

ft
w

ar
e

LynxElement

