
WHITEPAPER

 

 
Optimizing Trim Commands to Improve Flash Stor-
age Performance in Embedded Systems 

Exploring the Use of Discards and Comparing Linux Discards to 
Smart Discards on Reliance Nitro



1 | WHITEPAPER

Introduction
Solid state drives (SSDs), and their embedded cousins, eMMC and UFS, are seen by many as the future 

of mass storage. However, steep declines in performance can arise if the NAND flash is not utilized 

properly – and doing that requires a steady diet of discards. What 

does that mean for the flash and for the file system, and how can 

you balance the performance and the cost? This paper will break 

it down for you.

Discards: A Brief History
Discard (also called trim, unmap, or erase in various command 

sets) is a command which informs the storage media that the 

contents of a sector or range of sectors are no longer important 

– the data has been deleted or replaced - and thus the sectors’ 

contents do not need to be preserved until such time that the 

sectors are rewritten.

When a file is deleted from a file system, the content is marked 

obsolete but continues to occupy space on the media and more 

importantly, will continue to be managed by such tasks as wear-leveling and garbage collection. It is 

far better to notify the flash media that this data is no longer in use, a process Datalight pioneered in 

1997 with the Discard command for CardTrick, a predecessor to FlashFX. This command was original-

ly connected to a Datalight utility, FAT monitor on Microsoft Windows CE and Datalight ROM-DOS, 

then later became part of the Reliance file system.

The same type of interface was later utilized by some hard drive companies who used a DRAM cache 

for their rotating media – no need to keep the discarded blocks in RAM, or to run background defect 

management and error recovery processes1. On ATA, this was a trim command, and on SCSI, this was 

the unmap command. For SSDs, this command was referred to as a trim or discard, and we will use 

the term discard through the rest of this paper to refer collectively to any of these.

The first open source file systems to support discard commands were available in Linux on the 2.6.28 

kernel, from December of 2008. These were followed by Microsoft (Windows 7 and above) and Mac 

OS X (10.6.8 and above), among others.

The Benefits of Discards
Why are discards now available in so many real-time operating systems (RTOS) and on so many devic-

es? Primarily for the benefits available on NAND flash media, which may require a little explanation.

A flash memory device consists of one or more chips, which in turn consist of erase blocks, which in 

turn consist of pages. The only way to remove data is with the erase command, which resets every 

page in one erase block to the erased state. Only pages in an erased state can be written; a page, 

once written, cannot be rewritten without re-erasing the erase block and losing all the page data. 

Normally there is also a requirement that pages within an erase block are written sequentially. Most 

file systems are not designed to follow these rules, so a flash translation layer (FTL) is run atop of the 

raw flash memory and simulates a hard disk with rewritable sectors. The FTL can be software, like 

Datalight’s FlashFX Tera, or it can exist in firmware, as with eMMC, SD cards, SATA SSDs, and so on.

Contents
1 Introduction
1 Discards: A Brief History
1 The Benefits of Discards
2 Potential Drawbacks of Dis-

cards
3 Demonstrating the Impact of 

Discards
3 Performance Impact vs. Use 

Case 
4 Reliance Nitro’s Smart Dis-

cards – A Balanced Option
4 Further Impact – Erase Count
5 Summary



2 | WHITEPAPER

When a modern high-performance FTL (a page-based FTL as opposed to the older block-based 

FTLs) gets a write request, it will write into an erase block with erased pages and maintain metadata 

to record the physical location of the written sectors. When a sector is rewritten, it gets written to 

a new page (this is referred to as copy-on-write) and the metadata indicating its location is updat-

ed. Eventually, after enough has been written, the FTL will begin to run low on erase blocks which 

have not been written. Many of the erase blocks will contain pages with obsolete data (dead pages), 

sectors that have since been rewritten. To reclaim space, the FTL will pick an erase block with dead 

pages, copy out the live (not dead) pages, and then erase the block so it can be reused. This process 

is called garbage collection (or compaction in FlashFX terminology). Garbage collection can be an 

expensive process, substantially slowing down writes to the disk. The more live pages there are, the 

longer it takes for garbage collection to reclaim space, because every live page must be read and 

programmed in a different block before the old block is erased.

Discards improve the process of garbage collection by decreasing the number of live pages. Each 

discard lets the FTL know that the contents of that page are no longer important. These pages are 

not copied when the erase block is garbage collected, which makes that process (and writes to the 

disk) faster. Discards also reduce FTL write amplification, which increases how long the flash memory 

will last before it wears out.

Discards have little, if any, positive impact until the disk starts garbage collecting. Attempting to 

gauge the impact of discards by formatting the disk (which usually discards the whole media) and 

running a short benchmark is almost always misleading, because the FTL has enough unused erase 

blocks to make it through the whole test without any garbage collection. Longer and smarter testing 

is required to evaluate the impact of discards.

Potential Drawbacks with Discards
Discard commands need to propagate through all layers of the code. As an example, an ext4 parti-

tion on top of LVM (Logical Volume Management), which is in turn on top of a dm-crypt volume will 

need discards enabled at all three levels in order to effectively reach the SSD.

Discards are not free. They can take time to execute, which can impose a performance penalty for 

those operations which issue discards. They also often happen synchronously, blocking other I/O 

requests.

Figure 1: Compaction (Garbage Collection) on NAND flash media



3 | WHITEPAPER

Most FTLs need to write a record to indicate that a sector has been discarded; thus, in certain sce-

narios, discards can result in writing more to the flash memory instead of less. These downsides to 

discarding tend to be more pronounced when the discards are small; deleting or truncating or over-

writing small or fragmented files can result in especially expensive discards. Some storage arrays will 

ignore discards that are smaller than a megabyte for this reason2. 

The severity of these drawbacks depends on the use case and how well the storage media processes 

discards. In some cases, it is more efficient to turn discards off and pay the penalty during garbage 

collection.

Demonstrating the Impact of Discards
Most file systems on Linux have the option to be mounted with discards on or off. Most developers 

simply add the option “discard” to the mount options in /etc/fstab. This enables the file system to 

report to the media when blocks are modified or files are deleted. In fact, this immediate notification 

can generate operations on the media, and cause unexpected reduction in performance.

To demonstrate this, we measured ext4 with and without the discard option. The test we created 

filled the media with a large sequential write, erased that data and then created a series of frag-

mented files. We then measured how long it took to delete those files. Following that, another large 

sequential file was created using the same space. We measured  the throughput of the media while 

that create is taking place. 

We found that with discards off, ext4 

took 200 seconds to delete the frag-

mented files. These deletes happen 

in the file system, but the media does 

not erase the data – there has been no 

discard notification. The subsequent 

create thus pays a heavy compaction 

penalty, and the subsequent through-

put is quite poor – 609 KB/sec. (item 1)

With discards on, the subsequent 

create has much greater throughput, 

nearly 18 MB/sec. However, the pro-

cess of deleting the files issues a dis-

card for each extent, which happens 

immediately and synchronously. This slows the overall process for deleting files from 200 seconds to 

over four hours! (item 2)

Performance Impact vs. Use Case
This use case neatly demonstrates the performance choices required. It may not describe the use 

case for your design, but elements of this use case may impact your work without you realizing it.

A third option that is gaining popularity on Linux is to leave discards disabled (which avoids perform-

ing the operation in real time) and instead running an occasional script with fstrim. This command 

will periodically inform the media which blocks are free3. 

Figure 2: Test time and performance on ext4 with and without dis-
cards. Custom test using a Micron M500IT SSD and ext4 on Linux 
kernel 4.4



4 | WHITEPAPER

Some system latency will be created when this script is run, and how much latency is dependent 

on how many blocks are free – ext4 discards all free blocks for fstrim, whether or not they were 

already discarded. In the time between when the operations are performed and when the script is 

run, blocks pending discard will be wear leveled and compacted. Finally, not all RTOS environments 

have support for fstrim, or the capability to run this as a regularly scheduled job.

Reliance Nitro’s Smart Discards – A Balanced Option
The newest release of Reliance Nitro provides a better configuration option – Smart Discards. 

This feature provides a better option for discards, particularly on managed NAND flash (e.g., eMMC, 

SD, SSDs, etc.) with page-based FTLs. This feature defers discard requests until they are larger, or 

until they can be performed in the background.

Utilizing the same test and hardware platform as earlier, we found Reliance Nitro with smart discards 

to have the best possible performance characteristics. 

With Smart Discards enabled, Reliance 

Nitro took 349 seconds to delete the 

fragmented files, comparable with 

ext4 without discards. The subsequent 

create had a throughput of just over 18 

MB/sec, which is comparable to ext4 

with discards enabled. (Item 3)

Further Impact – Erase 
Counts
Both the Micron eMMC and SSD 

showed very similar performance for 

this test. While running on the eMMC media, we also utilized a vendor command to investigate the 

erase counts. This allows us to understand the impact of a given file system discard solution on the 

media.

The erase counts for the initial provisioning portion of the test were very similar. Major differences 

began to appear in the portion that writes and overwrites the fragmented files, the erases required 

to delete the files, and the erases required by the subsequent sequential write.

Figure 3: Test time and performance for ext4 and Reliance Nitro



Copyright © 2017 Datalight, Inc. All rights reserved. DATALIGHT, Datalight, the Datalight Logo,  
FlashFX, FlashFX Pro, FlashFX Tera, FlashFXe, Reliance, Reliance Nitro, Reliance Edge, ROM-DOS, 
and Sockets are trademarks or registered trademarks of Datalight, Inc. All other product names are 
trademarks of their respective holders. Specification and price change privileges reserved. 

Datalight, Inc. 
22118 20th Avenue SE, Suite 135
Bothell, WA 98021 USA
1-800-221-6630
www.Datalight.com 

About Datalight

Datalight leads the indus-

try in software technologies 

that manage data reliably in 

embedded devices. For more 

than 30 years, our focus on 

portable, flexible solutions 

has enabled customers to 

save money, reduce develop-

ment time and get to market 

faster. Our customers have 

discovered that our solutions 

result in unparalleled interop-

erability and increased cus-

tomer satisfaction. These ac-

complishments have helped 

Datalight earn a reputation 

as a provider of reliable and 

cost effective software solu-

tions that are backed by a 

commitment to custom-

er service and satisfaction.  

 

For more information, call 

425.951.8086 ext 100 or visit 

www.Datalight.com.

We found that ext4 with no discards required a substantial number of erases for 

each of the write tests. Turning on discards for ext4 greatly reduced the erases 

required for write and improved the overall total (27,843 compared to 41,740), but 

the total of erases required for deleting the fragmented files (and the time those 

erases took) was considerably more than expected. Datalight’s solution caused 

similar erases to ext4 while overwriting the fragmented files (understandable for a 

copy-on-write file system) but had the lowest overall total – 22,199 erases, or just 

47% of the total required by ext4.

Summary
Discards are one method to help improve the lifetime and performance of flash 

based media, including eMMC and SSD. Enabling discards on Linux file systems 

can introduce system overhead. Utilizing Datalight’s Smart Discards, available with 

the Reliance Nitro 5.0 release, provides the best balance of performance and life-

time – a 25% improvement shown with this test. This feature is also available for 

embedded designs across a wide range of RTOS environments beyond Linux.

References 
1.)     http://t13.org/Documents/UploadedDocuments/docs2008/e07154r6-Data_Set_Man 

agement_Proposal_for_ATA-ACS2.doc

2.)     https://forums.freebsd.org/threads/56951/#post-328912

3.) https://blog.neutrino.es/2013/howto-properly-activate-trim-for-your-ssd-on-linux-fst-

rim-lvm-and-dmcrypt/

Figure 4: eMMC erases required by test portions, comparing ext4 with and without discards and             

Reliance Nitro. Tests performed on a Pandaboard running Linux 4.1 with Micron eMMC media.

41,740

27,843

22,199

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

ext4

ext4 with
discards

Reliance
Nitro

Total Erase Operations

Reliance Nitro Smart Discards: 
Fewer Erases Extends Flash Media Life

Write fragmented files Overwrite fragmented files

Delete fragmented files Sequential write


