
ISO 26262 a Pain in the ASIL?

Cost effective software certification
in accordance with ISO 26262

www.ldra.com

© LDRA Ltd. This document is property of LDRA Ltd. Its contents cannot be reproduced, disclosed or utilised without company approval.

LDRA Ltd ISO 26262 a Pain in the ASIL?1

* Registration required to download the document

Software Technology

Technical Briefing

Background

There is an ever-widening range of automotive electrical and/or electronic (E/E/PE) systems such as
adaptive driver assistance systems, anti-lock braking systems, steering and airbags. Their increasing levels
of integration and connectivity provide almost as many challenges as their proliferation, with non-critical
systems such as entertainment systems sharing the same communications infrastructure as steering,
braking and control systems. The net result is a necessity for exacting functional safety development
processes, from requirements specification, design, implementation, integration, verification, validation,
and through to configuration.

ISO 26262 “Road vehicles – Functional safety” was published in response to this explosion in automotive
E/E/PE system complexity, and the associated risks to public safety1. Like the rail, medical device and
process industries before it, the automotive sector based their functional standard on the (largely) industry
agnostic functional safety standard IEC 615082 which, in turn, drew heavily from the guiding principles of
the aerospace standards such as DO-178B3 /C4 . The net result is that proven tools are available to help
with the implementation of ISO 26262 which are longer established than the standard itself.

ISO 26262:2011 consists of 10 parts with three focused on product development: system level (Part 4)5,
hardware level (Part 5)6, and software level (Part 6)7. It provides detailed industry specific guidelines for
the production of all software for automotive systems and equipment, whether it is safety critical or not.

ISO 26262:2011 specifies a number of hazard classifications levels, known as ASILs (Automotive Safety
Integrity Levels). ASILs range from A to D, so that the overhead involved in producing a safety critical
ASIL D system (e. g. automatic braking) is greater than that required to produce an ASIL A system with
few safety implications (e. g. the in-car entertainment system). ASILs are assigned as properties of each
individual safety function, not as a property of the whole system or system component, and each assigned
ASIL is influenced by the frequency of the situation (“exposure”), the potential impact should it occur
(“severity”), and how easily it can then be managed (“controllability”).

Security isn’t explicitly identified as a consideration in ISO 26262, perhaps reflecting the fact that
automotive embedded applications have traditionally been isolated, static, fixed function, device specific
implementations, and practices and processes have relied on that status. Connection to the outside
world changes things dramatically because it makes remote access possible while requiring no physical
modification to the car’s systems, most famously demonstrated in Miller and Valasek’s work “Remote
Exploitation of an Unaltered Passenger Vehicle”8.

However, as for any other risk, as soon as there is potential for security vulnerabilities to threaten safety,
ISO 26262 demands safety goals and requirements to deal with them. In short, the action to be taken to
deal with each safety-threatening security issue needs to be proportionate to the risk (and hence ASIL).

ISO 26262 process objectives

A key element of ISO 26262-4:2011 is the practice of allocating technical safety requirements in the system
design specification, and developing that design further to derive an item integration and testing plan.
It applies to all aspects of the system including software, with the explicit subdivision of hardware and
software development practices being dealt with further through the lifecycle.

1 https://www.iso.org/news/2012/01/Ref1499.html
2 IEC 61508:2010 Functional safety of electrical/electronic/programmable electronic safety-related systems
3 EUROCAE ED-12B December 1992 DO-178B/C, Software Considerations in Airborne Systems and Equipment Certification
4 RTC DO-178C,2011,Software Considerations in Airborne Systems and Equipment Certification
5 ISO 26262-4:2011 Road vehicles -- Functional safety -- Part 4: Product development at the system level
6 ISO 26262-5:2011 Road vehicles -- Functional safety -- Part 5: Product development at the hardware level
7 ISO 26262-6:2011 Road vehicles -- Functional safety -- Part 6: Product development at the software level
8 http://illmatics.com/Remote%20Car%20Hacking.pdf Remote Exploitation of an Unaltered Passenger Vehicle, Dr. Charlie Miller & Chris
Valasek, August 2015

LDRA Ltd ISO 26262 a Pain in the ASIL?2

The relationship between the system-wide ISO 26262-4:2011 and the software specific sub-phases found
in ISO 26262-6:2011 can be represented in a V-model. Each of those steps is explained further in the
following discussion.

System design (ISO 26262-4:2011 section 7)

The products of this system-wide design phase potentially include CAD drawings, spreadsheets, textual
documents and many other artefacts, and clearly a variety of tools can be involved in their production.
This phase also sees the technical safety requirements refined and allocated to hardware and software.
Maintaining traceability between these requirements and the products of subsequent phases generally
causes a project management headache.

The ideal tools for requirements management can range from a simple spreadsheet or Microsoft Word
document to purpose-designed requirements management tool such as IBM Rational DOORS Next
Generation9 or Siemens Polarion PLM10. The selection of the appropriate tools will help in the maintenance
of bi-directional traceability between phases of development, as discussed later.

Specification of software safety requirements (ISO 26262-6:2011 Section 6)

This sub-phase focuses on the specification of software safety requirements to support the subsequent
design phases, bearing in mind any constraints imposed by the hardware.

It provides the interface between the product-wide system design of ISO 26262-4:2011 and the
software specific ISO 26262-6:2011 and details the process of evolution of lower level, software related
requirements. It will most likely involve the continued leveraging of the requirements management tools
discussed in relation to the System Design sub-phase.

LDRA Ltd ISO 26262 a Pain in the ASIL?3

9 http://www-03.ibm.com/software/products/en/ratidoor
10 https://polarion.plm.automation.siemens.com/

Software architectural design (ISO 26262-6:2011 section 7)

There are many tools available for the generation of the software architectural design, with graphical
representation of that design an increasingly popular approach. Appropriate tools are exemplified by
MathWorks® Simulink®11 , IBM® Rational® Rhapsody®12 , and ANSYS® SCADE13.

Function

Software unit design and implementation (ISO 26262-4:2011 section 8)

Coding rules: The illustration is a typical example of a table from ISO 26262-6:2011. It shows the coding
and modelling guidelines to be enforced during implementation, superimposed with an indication of where
compliance can be confirmed by the LDRA tool suite.

Topics
ASIL

A B C D

1a Enforcement of low complexity ++✓ ++✓
++✓

++✓

1b Use of language subsets ++✓ ++✓ ++✓ ++✓
1c Enforcement of strong typing ++✓ ++✓ ++✓ ++✓
1d Use of defensive implementation techniques o + ++ ++

1e Use of established design principles +✓ +✓ +✓ ++✓
1f Use of unambiguous graphical representation + ++ ++ ++

1g Use of style guides +✓ ++✓ ++✓ ++✓
1h Use of naming conventions ++✓ ++✓ ++✓ ++✓

”++” The method is highly recommended for this ASIL.
“+“ The method is recommended for this ASIL.
“o“ The method has no recommendation for or against its usage for this ASIL.
✓ Satisfied by the LDRA tool suite

LDRA Ltd ISO 26262 a Pain in the ASIL?4

ISO 26262-6:2011 highlights the MISRA coding guidelines language subsets as an example of what could
be used. There are many different sets of coding guidelines available, but it is entirely permissible to use
an in-house set or to manipulate, adjust and add one of the standard set to make it more appropriate for
a particular application. The LDRA tool suite matches this flexibility.

 11 https://uk.mathworks.com/products/simulink.html

 12 http://www-03.ibm.com/software/products/en/ratirhapfami

 13 http://www.ansys.com/products/embedded-software/ansys-scade-suite

– Hierarchical structure of software components
– Restricted size of interfaces
– High cohesion within each software component
– Coupling between software components
– Control flow analysis
– Data flow analysis

LDRA static analysis tools contribute to
the verification of the design by means
of the control and data flow analysis
of the code derived from it, providing
graphical representations of the
relationship between code components
for comparison with the intended
design.

A similar approach can also be used to
generate a graphical representation of
legacy system code, providing a path
for additions to it to be designed and
proven in accordance with ISO 26262
principles.

These guidelines combine to
make the resulting code more
reliable, less prone to error,
easier to test, and/or easier
to maintain. Peer reviews
represent a traditional approach
to enforcing adherence to such
guidelines, and while they still
have an important part to play,
automating the more tedious
checks using the LDRA tool
suite is far more efficient, less
prone to error, repeatable, and
demonstrable.

Software architectural design and unit implementation:

Establishing appropriate project guidelines for coding, architectural design and unit implementation are
clearly three discrete tasks but software developers responsible for implementing the design need to be
mindful of them all concurrently.

As for the coding guidelines before them, the guidelines relating to software architectural design and
unit implementation are founded on the notion that they make the resulting code more reliable, less

prone to error, easier to test and/or easier to maintain. For example, architectural guidelines include:

• Restricted size of software components and Restricted size of interfaces are recommended not
least because large, rambling functions are difficult to read, maintain, and test – and hence more
susceptible to error.

• High cohesion within each software component. High cohesion results from the close linking between
the modules of a software program, which in turn impacts on how rapidly it can perform the different
tasks assigned to it.

More generally, the LDRA tool suite can ensure that the good practices required by ISO 26262:2011 are
adhered to whether they are coding rules, design principles, or principles for software architectural
design.

In practice, for developers who are newcomers to ISO 26262, the role of the tool often evolves from a
mechanism for highlighting violations, to a means to confirm that there are none.

Software unit testing (ISO 26262-6:2011 section 9) and Software integration and testing (ISO 26262-
6:2011 section 10)

Just as static analysis techniques (an automated “inspection” of the source code) are applicable across
the sub-phases of coding, architectural design and unit implementation, dynamic analysis techniques
(involving the execution of some or all of the code) are applicable to unit, integration and system testing.
Unit testing is designed to focus on particular software procedures or functions in isolation, whereas
integration testing ensures that safety and functional requirements are met when units are working
together in accordance with the software architectural design.

LDRA Ltd ISO 26262 a Pain in the ASIL?5

Analysing Control
Coupling

Requirement based
test case

Unexecuted code
for the given test
case

Unexecuted data reference for the given test case

On line 128 the reference to
airspeed by displayAirspeed is
not executed with this test case

The LDRA tool suite
provides metrics to
ensure compliance
with the standard
such as complexity
metrics as a
product of
interface analysis,
cohesion metrics
evaluated through
data object
analysis, and
coupling metrics
via data and
control coupling
analysis.

ISO 26262-6:2011 tables list techniques and metrics for performing unit and integration tests on target
hardware to ensure that the safety and functional requirements are met and software interfaces are
verified at the unit and integration levels. Fault injection and resource tests further prove robustness
and resilience and, where applicable, back-to-back testing of model and code helps to prove the correct
interpretation of the design. Artefacts associated with these techniques provide both reference for their
management, and evidence of their completion. They include the software unit design specification, test
procedures, verification plan
and verification specification.
On completing each test
procedure, pass/fail results
are reported and compliance
with requirements verified
appropriately.

The example shows how the
software interface is exposed
at the function scope allowing
the user to enter inputs and
expected outputs to form
the basis of a test harness
The harness is then compiled
and executed on the target
hardware, and actual and
expected outputs compared.

Unit tests become integration tests as units are introduced as part of a call tree, rather than being
“stubbed”. Exactly the same test data can be used to validate the code in both cases.

The analysis of boundary values can be automated using an “extreme test” facility within the LDRA tool
suite to automatically generate a series of unit test cases. The same facility also provides a facility for the
definition of equivalence boundary values such as minimum value, value below lower partition value, lower
partition value, upper partition value and value above upper partition boundary.

Should changes become necessary – perhaps as a result of a failed test, or in response to a requirement
change from a customer - then all impacted unit and integration tests would need to be re-run (regression
tested). The LDRA tool suite provides the means to automatically re-apply those tests to ensure that
the changes do
not compromise
any established
functionality.

ISO 26262:2011
does not require
that any of the tests
it promotes deploy
software test tools.
However, just as
for static analysis,
dynamic analysis
tools help to make
the test process
far more efficient,
especially for
substantial projects.

LDRA Ltd ISO 26262 a Pain in the ASIL?6

Structural coverage metrics: In addition to showing that the software functions correctly, LDRA’s dynamic
analysis is used to generate structural coverage metrics. In conjunction with the coverage of requirements
at the software unit level, these metrics provide the necessary data to evaluate the completeness of test
cases and to demonstrate that there is no unintended functionality.

Metrics recommended by ISO 26262:2011 and provided by the LDRA tool suite include functional, call,
statement, branch and MC/DC coverage. Unit and system test facilities can operate in tandem, so that (for
instance) coverage data can be generated for most of the source code through a dynamic system test, and
then be complemented using unit tests to exercise such as defensive constructs which are inaccessible
during normal system operation.

Software test and model based development: The LDRA tool suite can be integrated with several different
model based development tools, such as MathWorks Simulink, IBM Rational Rhapsody, and ANSYS SCADE.
The development phase involves the creation of the model in the usual way, with the integration becoming
more pertinent once source code has been auto generated from that model.

Using the MathWorks product as an example, “Back-to-back” testing is approached by first developing
and verifying design models within Simulink. Code is then generated from Simulink, instrumented by the
LDRA tool suite, executed in either Software in the Loop (SIL or host) mode, or Processor In the Loop (PIL
or target) mode. Structural coverage reports are presented at the source code level by Simulink and the
LDRA tool suite in tandem.

In addition to “back-to-back” testing, such an integration provides facilities to ensure that generated
source code complies compliance with an appropriate coding standard, such as MISRA AC ACG14, perform
addition dynamic testing at the source code level, verify compliance with requirements, and test any hand-
written additions to the auto generated code.

Bi-directional traceability (ISO 26262-4:2011 and ISO 26262-6:2011)

Bi-directional traceability runs as a principle throughout ISO26262:2011, with each development phase
required to accurately reflect the one before it. In theory, if the exact sequence of the V-model is adhered
to, then the requirements will never change and tests will never throw up a problem. But life’s not like that.

Consider, then, what happens if there is a code change in response to a failed integration test, perhaps
because the requirements are inconsistent or there is a coding error. What other software units were
dependent on the modified code?

Such scenarios can quickly lead to situations where the traceability between the products of software
development falls down. Once again, while it is possible to maintaining traceability manually, automation
helps a great deal.

Software unit design can take many forms – perhaps in the form of a natural language detailed design
document, or perhaps model based. Either way, these design elements need to be bi-directionally
traceable to both software safety requirements and the software architecture. The software units must
then be implemented as specified and then be traceable to their design specification.

The LDRA tool suite can be used to establish traceability policy between requirements and tests cases
of different scopes, which allows test coverage to be assessed. The impact of failed test cases can be
assessed and addressed, as can the impact in requirements changes and gaps in requirements coverage.
And artefacts such as traceability matrices can be automatically generated to present evidence of
compliance to ISO 26262:2011.

LDRA Ltd ISO 26262 a Pain in the ASIL?7

14 https://www.misra.org.uk/tabid/72/Default.aspx

In practise, initial structural coverage is usually accrued as part of this holistic process from the execution
of functional tests on instrumented code leaving unexecuted portions of code which require further
analysis. That ultimately results in the addition or modification of test cases, changes to requirements,
and/or the removal of dead code. Typically, an iterative sequence of review, correct and analyse ensures
that design specifications are satisfied.

Confidence in the use of software tools (ISO 26262-8:2011 section 11)

This supporting process defines a mechanism to provide evidence that the software tool chain is
competent for the job. The required level of confidence in a software tool depends upon the circumstances
of its deployment, both in terms of the possibility that a malfunctioning software tool can introduce or fail
to detect errors in a safety-related element being developed, and the likelihood that such errors can be
prevented or detected.

LDRA Ltd ISO 26262 a Pain in the ASIL?8

LDRA Ltd ISO 26262 a Pain in the ASIL?9

ISO
 26262 a Pain in the A

S
IL v2.0 06/17

www.ldra.com
LDRA Technology Inc.

2540 King Arthur Blvd, 3rd Floor, 12th Main Lewisville Texas 75056
Tel: +1 (855) 855 5372
e-mail: info@ldra.com

LDRA UK & Worldwide
Portside, Monks Ferry,

Wirral, CH41 5LH
Tel: +44 (0)151 649 9300

e-mail: info@ldra.com

LDRA Technology Pvt. Ltd.
Unit B-3, Third floor Tower B, Golden Enclave

HAL Airport Road Bengaluru 560017
Tel: +91 80 4080 8707

e-mail: india@ldra.com

The LDRA tool suite has been qualified for use in ISO 26262 compliant systems up to ASIL D, which re-
moves considerable user overhead in providing evidence of that confidence.

Depending on the user’s assessment of their application, the LDRA tool suite will be assigned a “Tool
Confidence Level“ of either TCL1 or TCL2. In all cases except where the tool suite is assigned TCL2 and the
product is designated ASIL D, the existence of a TUV certificate is sufficient to establish sufficient confi-
dence in the tool. Otherwise, the tool is required to be subjected to a validation process, to show that the
tool is capable of analysing sample software in the appropriate target environment.

A Tool Qualification Support Package (TQSP) is available from LDRA to provide that sample software.

