l DR 3 Technical Briefing

Software Technology

ISO 26262 a Pain in the ASIL?

Cost effective software certification
in accordance with 1SO 26262

www.ldra.com

© LDRA Ltd. This document is property of LDRA Ltd. Its contents cannot be reproduced, disclosed or utilised without company approval.

LDRA Ltd 1 ISO 26262 a Pain in the ASIL?

LDRA

There is an ever-widening range of automotive electrical and/or electronic (E/E/PE) systems such as
adaptive driver assistance systems, anti-lock braking systems, steering and airbags. Their increasing levels
of integration and connectivity provide almost as many challenges as their proliferation, with non-critical
systems such as entertainment systems sharing the same communications infrastructure as steering,
braking and control systems. The net result is a necessity for exacting functional safety development
processes, from requirements specification, design, implementation, integration, verification, validation,
and through to configuration.

Background

ISO 26262 “Road vehicles — Functional safety” was published in response to this explosion in automotive
E/E/PE system complexity, and the associated risks to public safety’. Like the rail, medical device and
process industries before it, the automotive sector based their functional standard on the (largely) industry
agnostic functional safety standard IEC 615082 which, in turn, drew heavily from the guiding principles of
the aerospace standards such as DO-178B> /C*. The net result is that proven tools are available to help
with the implementation of ISO 26262 which are longer established than the standard itself.

ISO 26262:2011 consists of 10 parts with three focused on product development: system level (Part 4)°,
hardware level (Part 5)¢, and software level (Part 6). It provides detailed industry specific guidelines for
the production of all software for automotive systems and equipment, whether it is safety critical or not.

ISO 26262:2011 specifies a number of hazard classifications levels, known as ASILs (Automotive Safety
Integrity Levels). ASILs range from A to D, so that the overhead involved in producing a safety critical

ASIL D system (e. g. automatic braking) is greater than that required to produce an ASIL A system with

few safety implications (e. g. the in-car entertainment system). ASILs are assigned as properties of each
individual safety function, not as a property of the whole system or system component, and each assigned
ASILis influenced by the frequency of the situation (“exposure”), the potential impact should it occur
(“severity”), and how easily it can then be managed (“controllability”).

Security isn’t explicitly identified as a consideration in ISO 26262, perhaps reflecting the fact that
automotive embedded applications have traditionally been isolated, static, fixed function, device specific
implementations, and practices and processes have relied on that status. Connection to the outside
world changes things dramatically because it makes remote access possible while requiring no physical
modification to the car’s systems, most famously demonstrated in Miller and Valasek’s work “Remote
Exploitation of an Unaltered Passenger Vehicles.

However, as for any other risk, as soon as there is potential for security vulnerabilities to threaten safety,

ISO 26262 demands safety goals and requirements to deal with them. In short, the action to be taken to
deal with each safety-threatening security issue needs to be proportionate to the risk (and hence ASIL).

ISO 26262 process objectives

A key element of ISO 26262-4:2011 is the practice of allocating technical safety requirements in the system
design specification, and developing that design further to derive an item integration and testing plan.

It applies to all aspects of the system including software, with the explicit subdivision of hardware and
software development practices being dealt with further through the lifecycle.

! https://www.iso.org/news/2012/01/Ref1499.html

2|EC 61508:2010 Functional safety of electrical/electronic/programmable electronic safety-related systems

3EUROCAE ED-12B December 1992 DO-178B/C, Software Considerations in Airborne Systems and Equipment Certification

4 RTC DO-178C,2011,Software Considerations in Airborne Systems and Equipment Certification

51S0 26262-4:2011 Road vehicles -- Functional safety -- Part 4: Product development at the system level

©1S0 26262-5:2011 Road vehicles -- Functional safety -- Part 5: Product development at the hardware level

71S0 26262-6:2011 Road vehicles -- Functional safety -- Part 6: Product development at the software level

8 http://illmatics.com/Remote%20Car%20oHacking.pdf Remote Exploitation of an Unaltered Passenger Vehicle, Dr. Charlie Miller & Chris
Valasek, August 2015

LDRA Ltd 2 ISO 26262 a Pain in the ASIL?

LDRA

The relationship between the system-wide I1SO 26262-4:2011 and the software specific sub-phases found
in ISO 26262-6:2011 can be represented in a V-model. Each of those steps is explained further in the
following discussion.

1S0 26262-4:2011 1SO 26262-4:2011
section 7 section 8
System design | Item integration
Requirements and testing Compliance
traceability management
TBmanager®
IBM® Rational®
DOORS®
Polarion A[_M! 1SO 262(?2-6:2011 I1SO 252§2-5:2011
ReqlF, Section's seotion 1t Test verification
MS Word & Specification of Verification of TBvision® and
Excel software safety software safety S-SR

requirements requirements

Esterel SCADE

gfleovdeellogaseeni 1ISO 262?2-6?:2011 1SO 262[_52-6152011 |ntegrated and model
IBM® Rational® Ssggtirz;re Ssg?tl\j’v;re driven testing
8 ; : : TBvision®
Rhapsody® architectural \ integration Hsien
Mathworks Simulink design and testing

- Automated unit testing
ISO 26262-6:2011 ISO 26262-6:2011 TBrun®

Statip analyfsis section 8 section 9 LDRAuUnNIit®
Quality metrics Software unit Software unit TBeXtreme®
Coding standards compliance design and testing

TBvision®
LDRArules®, LDRAcover®

implementation

Programming standards
checking and metrication

TBvision®
LDRArules® 1

System design (1SO 26262-4:2011 section 7)

The products of this system-wide design phase potentially include CAD drawings, spreadsheets, textual
documents and many other artefacts, and clearly a variety of tools can be involved in their production.
This phase also sees the technical safety requirements refined and allocated to hardware and software.
Maintaining traceability between these requirements and the products of subsequent phases generally
causes a project management headache.

The ideal tools for requirements management can range from a simple spreadsheet or Microsoft Word
document to purpose-designed requirements management tool such as IBM Rational DOORS Next
Generation® or Siemens Polarion PLM, The selection of the appropriate tools will help in the maintenance
of bi-directional traceability between phases of development, as discussed later.

Specification of software safety requirements (ISO 26262-6:2011 Section 6)

This sub-phase focuses on the specification of software safety requirements to support the subsequent
design phases, bearing in mind any constraints imposed by the hardware.

It provides the interface between the product-wide system design of ISO 26262-4:2011 and the

software specific ISO 26262-6:2011 and details the process of evolution of lower level, software related
requirements. It will most likely involve the continued leveraging of the requirements management tools
discussed in relation to the System Design sub-phase.

9 http://www-03.ibm.com/software/products/en/ratidoor

10 https://polarion.plm.automation.siemens.com/

LDRA Ltd 3 ISO 26262 a Pain in the ASIL?

LDRA

Software architectural design (IS0 26262-6:2011 section 7)

There are many tools available for the generation of the software architectural design, with graphical
representation of that design an increasingly popular approach. Appropriate tools are exemplified by
MathWorks® Simulink®: , IBM® Rational® Rhapsody®?, and ANSYS® SCADE®.

scin LDRA static analysis tools contribute to
4 ¢ TunnelData:Dataln:GetData e . .
e Calls the verification of the design by means
“ O PammEe _ of the control and data flow analysis
() TunnelData:Tunnel * - pTunnel . . S
4 = Member Variables of the code derived from it, providing
+ Buffer - Char TunnelData: :Dataln:: GetData . .
il e e graphlcal r'epresentatlons of the
T NumsSystemParams - Sint_32 relationship between code components
I NumZoneParams - Sint_32 . . .
v for comparison with the intended
design.

TunnelData::Tunnel::InitialiseTunnel

- Hierarchical structure of software components
- Restricted size of interfaces
- High cohesion within each software component
— Coupling between software components
- Control flow analysis
- Data flow analysis

A similar approach can also be used to
generate a graphical representation of
legacy system code, providing a path
for additions to it to be designed and
proven in accordance with ISO 26262
principles.

TunnelData::Cell::InitialiseCell

p::GetMaximumLumens [l TunnelData::Lamp: :InitialiseLamp il TunnelData::Lamp::GetMinimumLumens [l TunnelData::Cell::GetLampModel

Software unit design and implementation (ISO 26262-4:2011 section 8)

Coding rules: The illustration is a typical example of a table from ISO 26262-6:2011. It shows the coding
and modelling guidelines to be enforced during implementation, superimposed with an indication of where
compliance can be confirmed by the LDRA tool suite.

These guidelines combine to Topics 210

make the resulting code more A B ¢ D

reliable, less prone to error, 1a Enforcement of low complexity ++v ++V

easier to test, and/or easier /S
to maintain. Peer reviews 1b Use of language subsets +Hv
represent a traditional approach 1c Enforcement of strong typing ++v [+ /S S
to enforcing adherence to such 1d Use of defensive implementation techniques o + ++ ++
gUide“n‘?S» and while they still 1e Use of established design principles +/ o+ 4/
have an I.mpohrtant part fjo play, 1f Use of unambiguous graphical representation + ++ ++ ++

Checks using the LDRA ool 18 Useofstl guides + el el
suite is far more efficient, less 1h Use of naming conventions ++v Y+
prone to error, repeatable, and ”++” The method is highly recommended for this ASIL.

demonstrable. “+“ The method is recommended for this ASIL.

“0“ The method has no recommendation for or against its usage for this ASIL.
v/ Satisfied by the LDRA tool suite

ISO 26262-6:2011 highlights the MISRA coding guidelines language subsets as an example of what could
be used. There are many different sets of coding guidelines available, but it is entirely permissible to use
an in-house set or to manipulate, adjust and add one of the standard set to make it more appropriate for
a particular application. The LDRA tool suite matches this flexibility.

1 https://uk.mathworks.com/products/simulink.html

12 http:/ /www-03.ibm.com/software/products/en/ratirhapfami

13 http://www.ansys.com/products/embedded-software/ansys-scade-suite

LDRA Ltd 4 ISO 26262 a Pain in the ASIL?

LDRA

Software architectural design and unit implementation:

Establishing appropriate project guidelines for coding, architectural design and unit implementation are
clearly three discrete tasks but software developers responsible for implementing the design need to be
mindful of them all concurrently.

As for the coding guidelines before them, the guidelines relating to software architectural design and
unit implementation are founded on the notion that they make the resulting code more reliable, less
v § TunnelData:Cell:Cell

Vv % Float/integer conversion without cast. Required 435S MISRA-C++:2008 5-0-5
¢ Float/integer conversion without cast. : (double and int): f Required 4358 MISRA-C++:2008 5-0-5
¢ Float/integer conversion without cast. : (double and int): f < NumLampTypes Required 4355 MISRA-C++:2008 5-0-5
¢ Pointer subtraction not addressing one array. Required 438S MISRA-C++:2008 5-0-17
¢ Cast to an unrelated type. : (double* to igt*): {Sint 32 *) p_f Required 554§ MISRA-C++:2008 3-9-3,5-2-7
Casting operation on a pointer. : (double* to . . MISRA-C++:2008 5-2-7
¢ Use of C type cast. Standards Violation MISRA-C++:2008 5-2-4
¢ Casting operation to a pointer. : (double* to int*): (Sint_32 MISRA-C++:2008 5-2-7

prone to error, easier to test and/or easier to maintain. For example, architectural guidelines include:

e Restricted size of software components and Restricted size of interfaces are recommended not
least because large, rambling functions are difficult to read, maintain, and test — and hence more
susceptible to error.

e High cohesion within each software component. High cohesion results from the close linking between
the modules of a software program, which in turn impacts on how rapidly it can perform the different
tasks assigned to it.

The LDRA tool suite
provides metrics to
ensure compliance

4 O Table A-78 - Test coverage of software structure (dats coupling and contral coupling) is achieved - Fulfilled - 2 assets j maw |
i Seftware Venfication Results fulfilled by 2 items

A h reerage
W DataCouplingReport himl

Variabe L0 View

with the standard Requirement based Mc'uc:.r_;.rm.‘n ::l::und ;I:r:é

such as complexity | testcase g o
metrics as a

product of L B et Tt ion

interface analysis, Unexecuted code = pR———

cohesion metrics forthe giventest [\ st W ——
evaluated through case o “ S

data object wlh ! =
analysis, and Unexecuted data reference for the given test case

coupling metrics B e sy e

via data and -

control coupling e o

analysis.

More generally, the LDRA tool suite can ensure that the good practices required by ISO 26262:2011 are
adhered to whether they are coding rules, design principles, or principles for software architectural
design.

In practice, for developers who are newcomers to ISO 26262, the role of the tool often evolves from a
mechanism for highlighting violations, to a means to confirm that there are none.

Software unit testing (IS0 26262-6:2011 section 9) and Software integration and testing (IS0 26262-
6:2011 section 10)

Just as static analysis techniques (an automated “inspection” of the source code) are applicable across
the sub-phases of coding, architectural design and unit implementation, dynamic analysis techniques
(involving the execution of some or all of the code) are applicable to unit, integration and system testing.
Unit testing is designed to focus on particular software procedures or functions in isolation, whereas
integration testing ensures that safety and functional requirements are met when units are working
together in accordance with the software architectural design.

LDRA Ltd ISO 26262 a Pain in the ASIL?

LDRA

ISO 26262-6:2011 tables list techniques and metrics for performing unit and integration tests on target
hardware to ensure that the safety and functional requirements are met and software interfaces are
verified at the unit and integration levels. Fault injection and resource tests further prove robustness
and resilience and, where applicable, back-to-back testing of model and code helps to prove the correct
interpretation of the design. Artefacts associated with these techniques provide both reference for their
management, and evidence of their completion. They include the software unit design specification, test

procedures, verification plan

and verification specification.
On completing each test
procedure, pass/fail results
are reported and compliance
with requirements verified
appropriately.

The example shows how the
software interface is exposed
at the function scope allowing
the user to enter inputs and
expected outputs to form

the basis of a test harness
The harness is then compiled
and executed on the target
hardware, and actual and
expected outputs compared.

[24 C/C o+ TBrun Version 5.6.0 © 2017 LDRA Lio

Scarce Sequence TertCase Run Driver Stub Mamagement Global Varadées Dictionary ©xtreme Test Results Configure View Version Controd Website Help

D B

1 OB e e BT H s E& B uE @
Ctrject: 0 = . i Yol
Sequence TunneiSequence (C++) 1 Files 10 1 Test Cases 12
teg Vi
’ Test Manager Report not generated - cotion disabled for more than 5 fies

s Repetory sicted
s Rapitery inisted

Regeession P/ F
PSS
PRSS.
pss
PSS
PSS
& s
PRSS.

Procedure

TureetDataclampclams

PASS.
eSS
FRSS
PSS
s
PSS
PASS
PSS
PSS
PSS
PSS

Tunewi Dt aenp-daiti,
TurewsDiatactampattr At
TureeiData-SquarelampSquacslamp

TunneDiata-lampattributesHeignt 1
TuneeiDataclampattributescWidtn
Turned DatecLsmpattributes-Drse
enpattribute=Dira]
ampAttributesOrae 0
ampattributesOran 1
TunewsDatacLampiAttributes-Dras 1

B4
@15
@ 16
|17
I

Far Help, press F1

: R B R EHEDB

X Fda Ve 8

= O TwnsdSeusns

File Exploer
% Tt Data-LampAniitutes-Ares
4 % WrewiDataSouarelamaSquarelamp
E Cally

) Faramaters
4 = Cambined Caveragé fun

#x

Number of Ca Call Tyes
1 Detauit Constructor
1 Defauit Constructor
] Inlerret Construcion
Internad Constructor

& TunnesDataSystemDats-Systembata
& TuneeDataSquaelamp:Squarelama
& Ture ningAs

[Internal Constructor
teea 0 e Construcion
7 Intemai Constructor
1 Intemal Constructor
Inlernat Construcion

Yy TumeiDatactampeiams

Wariabie [0 View " x

Value

Mare

Type Use

o o Input parameter appies through loal
t TamelDeta:LgitSoio FunnelDetazmodel Input parsmeter sppived thiough local
@ TarnelDatazLightSclo ThsModel TnnelDatazmodel Ouly
1 height -
¥3 1 width

Unit tests become integration tests as units are introduced as part of a call tree, rather than being
“stubbed”. Exactly the same test data can be used to validate the code in both cases.

The analysis of boundary values can be automated using an “extreme test” facility within the LDRA tool
suite to automatically generate a series of unit test cases. The same facility also provides a facility for the
definition of equivalence boundary values such as minimum value, value below lower partition value, lower
partition value, upper partition value and value above upper partition boundary.

Should changes become necessary — perhaps as a result of a failed test, or in response to a requirement
change from a customer - then all impacted unit and integration tests would need to be re-run (regression
tested). The LDRA tool suite provides the means to automatically re-apply those tests to ensure that

the changes do

not compromise
any established
functionality.

AT (5}

TR Erme-Toee
TRy Eree-tasalnron

Tomecis T e AdueePowind ey

ISO 26262:2011
does not require
that any of the tests
it promotes deploy
software test tools.
However, just as

for static analysis,
dynamic analysis
tools help to make
the test process

far more efficient,
especially for
substantial projects.

Tt T e Adueet ey gty

persoe Fass/Fal s Flowarasn of proceoure : TusnciData-Coll-SetPowencdOutaf

o opvom Ssect Wemneting i
.

B - | 444 % a
=
p-_________ -
wo i
. s
ps e 1
pe = |
[
b e
[
C— SF
E Lovpstcont [Trpecom = miomgTypmcone | Trowcinre |
[=
:— o o
'— 5 ° m
e —
:
W e | "]
[L
|
= ©
[
E _g
O
T
|
T 1 o
s _____}
@
[EE——
| A
L]

LDRA Ltd

ISO 26262 a Pain in the ASIL?

LDRA

Structural coverage metrics: In addition to showing that the software functions correctly, LDRA’s dynamic
analysis is used to generate structural coverage metrics. In conjunction with the coverage of requirements
at the software unit level, these metrics provide the necessary data to evaluate the completeness of test
cases and to demonstrate that there is no unintended functionality.

Metrics recommended by ISO 26262:2011 and provided by the LDRA tool suite include functional, call,
statement, branch and MC/DC coverage. Unit and system test facilities can operate in tandem, so that (for
instance) coverage data can be generated for most of the source code through a dynamic system test, and
then be complemented using unit tests to exercise such as defensive constructs which are inaccessible
during normal system operation.

Software test and model based development: The LDRA tool suite can be integrated with several different
model based development tools, such as MathWorks Simulink, IBM Rational Rhapsody, and ANSYS SCADE.
The development phase involves the creation of the model in the usual way, with the integration becoming
more pertinent once source code has been auto generated from that model.

Using the MathWorks product as an example, “Back-to-back” testing is approached by first developing
and verifying design models within Simulink. Code is then generated from Simulink, instrumented by the
LDRA tool suite, executed in either Software in the Loop (SIL or host) mode, or Processor In the Loop (PIL
or target) mode. Structural coverage reports are presented at the source code level by Simulink and the
LDRA tool suite in tandem.

In addition to “back-to-back” testing, such an integration provides facilities to ensure that generated
source code complies compliance with an appropriate coding standard, such as MISRA AC ACG*4, perform
addition dynamic testing at the source code level, verify compliance with requirements, and test any hand-
written additions to the auto generated code.

Bi-directional traceability (ISO 26262-4:2011 and I1SO 26262-6:2011)

Bi-directional traceability runs as a principle throughout 1IS026262:2011, with each development phase
required to accurately reflect the one before it. In theory, if the exact sequence of the V-model is adhered
to, then the requirements will never change and tests will never throw up a problem. But life’s not like that.

Consider, then, what happens if there is a code change in response to a failed integration test, perhaps
because the requirements are inconsistent or there is a coding error. What other software units were
dependent on the modified code?

Such scenarios can quickly lead to situations where the traceability between the products of software
development falls down. Once again, while it is possible to maintaining traceability manually, automation
helps a great deal.

Software unit design can take many forms — perhaps in the form of a natural language detailed design
document, or perhaps model based. Either way, these design elements need to be bi-directionally
traceable to both software safety requirements and the software architecture. The software units must
then be implemented as specified and then be traceable to their design specification.

The LDRA tool suite can be used to establish traceability policy between requirements and tests cases

of different scopes, which allows test coverage to be assessed. The impact of failed test cases can be
assessed and addressed, as can the impact in requirements changes and gaps in requirements coverage.
And artefacts such as traceability matrices can be automatically generated to present evidence of
compliance to ISO 26262:2011.

14 https://www.misra.org.uk/tabid/72/Default.aspx_

LDRA Ltd 7 ISO 26262 a Pain in the ASIL?

L3 System Level Requkements

'

15% Vrfind
13 Reee
2 \betod
11 Urneerilied

-~ A Y
L3 High Level Requirements —————————[§ tigh Level Tests

2% Vestfied 100% Ve Tied
4 Nems 3 e

1 Ver Fiedd 3 Verfind
33 Unverfied | 0 Unverfied

\

5% \erfied 13% e fed
58 ltems 36 Rtoms
3 Ve S Verlfied

55 Unverfind 31 Unwerfind

, AN .
L Low Level Requirements ‘—-—L’ Low Level Tests

Smazretea
2 S v e veseal O
<> - Set Tere = (49) Amy em

B MU 00N Powae (1 Nicte
=

Aetey &

<> - Scea

Yo = (S0)TCH

Ry srevest Sody

e s
b ot reut

Bi-directional traceability and
test coverage

P
121 Do 1 Macrwn =@ O
ol <5 - G Nee v (64) Ay T

P arge €0 raee = be rpat

| o w2t Satn e rchate it 2w et

\;*km-‘u-’u,«w. Targe (420)

g 13Pnere l

Automated Test
Case Execution

et
| T b b P i BN . ——) G

== e

|y —— e —————y— ,...‘-ml

= e ————

In practise, initial structural coverage is usually accrued as part of this holistic process from the execution
of functional tests on instrumented code leaving unexecuted portions of code which require further
analysis. That ultimately results in the addition or modification of test cases, changes to requirements,
and/or the removal of dead code. Typically, an iterative sequence of review, correct and analyse ensures

that design specifications are satisfied.

Confidence in the use of software tools (ISO 26262-8:2011 section 11)

This supporting process defines a mechanism to provide evidence that the software tool chain is
competent for the job. The required level of confidence in a software tool depends upon the circumstances
of its deployment, both in terms of the possibility that a malfunctioning software tool can introduce or fail
to detect errors in a safety-related element being developed, and the likelihood that such errors can be

prevented or detected.

CERTIFICATE

No. Z10 16 09 84753 003

Holder of Certificate: LDRA Ltd,
Py, Miris Famy
st

Marsayside CHAT SLH
UNITED KINGDOM

Factory(les):
Certification Mark:

84753

Product:
Model(s):

Software Tool for Safety Related Dovelopmant

LDRA tool sulte
LDRArules
LDRAcover
LDRAunit
LDRAlite
Parametars: Tha cerstod toals, classifled T2, MMl the requirements
for support Kols according o IEC 81508-3 and EN 50128,
The tools are guakfied & be used in safutyrelated
software Sevaloomant acconting 1o IEC G1508, EN 50128
mnd 150 26262 1 is soably validated for use in ll’!(\'
related devalopmant asconting b IEC 82304061

=
<T
[X]
e
-
-3
[**}
[T
*
=]
=]
=<
o
e
=
[
i
[
*
-
L
o
=
e
=
-
o
w
[x]
*
]

The fast ropcet & 0 ey pt of s carheat

Tested
according to:

1EC §1508-X0d.7}
150 20262-8:2011
EN 5012832001

|numwm|mmnnnu.nmm:mm:4sn—nsum-uruq.uu—e s The

e ply o s ot parreitind to alter the
‘znl\'ﬂmrmnnwy " acklton the cersficatin hekder must ol anier e coticat
o Pird paries. Soa akso notes cverieal

ZERTIFIKAT # CERTIFICATE ¢ i

Teat repan ne.s LWESOMIC
‘Valkid unsil: 2021-10-03
5,
; ;
&
Dats, 2016-40-04 1 it Houmanm
Paga ol
(8 Proguct Sen et 3t] TIE 0. larm:

@
o
Procuct Servos

oW

LDRA Ltd

LICENCE HOLDER
A LA

LDRALTD

WIRFRAL CHA
UNITED mm,DOu

PROJECT NOLID

KICZAL01

Tested according to

Cartified produet(s)

Modei(s)
ey

Technical Data and

PORTSIDE, MC'\KS FERRY,

Specilic Requirsments

CERTIFICATE NO FS/71/220/115/0105

H-KNUFQC'TUWG PLANT

—X’JP SI.JL MO
Wi RAI CH4

UNITED K -Jr‘.)o

LICENSED TEST MARK

Usable in devaiopmant of safety

150 20202 U b ASIL 0. TCLY can be reached
o IEC #1508 up o SIL 4, class T2 toos

* ENS0128up o SW-SIL 4, class T2 todl

= IEC §2304 up to SW eadety Class C

* IEC 60880

CERT, REPORT MO,

KAC20008

related sofbwars ace. io:

PAGE 111

ms FERRY,

ISO 26262 a Pain in the ASIL?

LDRA

The LDRA tool suite has been qualified for use in ISO 26262 compliant systems up to ASIL D, which re-
moves considerable user overhead in providing evidence of that confidence.

Depending on the user’s assessment of their application, the LDRA tool suite will be assigned a “Tool
Confidence Level” of either TCL1 or TCL2. In all cases except where the tool suite is assigned TCL2 and the
product is designated ASIL D, the existence of a TUV certificate is sufficient to establish sufficient confi-
dence in the tool. Otherwise, the tool is required to be subjected to a validation process, to show that the
tool is capable of analysing sample software in the appropriate target environment.

A Tool Qualification Support Package (TQSP) is available from LDRA to provide that sample software.

LDRA Technology Inc.

2540 King Arthur Blvd, 3rd Floor, 12th Main Lewisville Texas 75056
Tel: +1 (855) 855 5372

/1/90 0°2A7|SY 3y} Ul Uled B 29292 0S|

LDRA UK & Worldwide LDRA Technology Pvt. Ltd.
Portside, Monks Ferry, Unit B-3, Third floor Tower B, Golden Enclave
Wirral, CH41 5LH HAL Airport Road Bengaluru 560017

Tel: +44 (0)151 649 9300 Tel: +91 80 4080 8707

e-mail: india@ldra.com

LDRA Ltd 9 ISO 26262 a Pain in the ASIL?

