
WHITE PAPER

Addressing the
challenges of low
latency video system
requirements for
embedded applications

WHITE PAPER 2

Introduction

Video processing is ubiquitous in our everyday lives, and dates back nearly a century
(electronic image transmission was first demonstrated 90 years ago). Transmission
of images by digital means is 48 years old and commercial digital video 30 years old.

In recent years, improvements in video quality have skyrocketed; HD
(“High Definition”) video only within the 21st century and 4K video in the
last 10 years. This has been a dramatic change. Consider that, in terms
of pixels , HD represents a 200% - 575% increase, and full 4K video is a
4000% increase over the “standard definition” (SD) video employed up
until 2000 (Super Bowl XXXIV was the first HD broadcast). As each pixel
needs to be individually processed and transmitted, the need for the most
powerful possible computing capability has risen in similarly exponential
fashion, with a requirement (in the 60 frames per second case) to process
over 18 Gigabytes of (unencoded) data per second – as opposed to 0.44
Gigabits/second for standard definition.

The challenges of handling this volume of data have been met with new
processor technologies and systems designs. Graphics processing unit
(GPU) technology, with its massively parallel capability, has been
a huge enabler, delivering crisp, compacted HD and 4K+
video. However, a GPU can only process what it has in
memory; getting that video into memory is another
matter; the capture of this high-density video data in
anything close to “real time” is a real problem - the
“latency” problem.

Video systems are everywhere
- from internet cat videos to
medical imaging, military
surveillance systems and
rapidly-evolving autonomous
vehicle applications. Digital
video-based systems
generally provide one or
more of three, basic functions;
image display (your TV set), image
storage (for later analysis or viewing -
like an MRI scan); or image data processing
to extract information that directly initiates
action (like the lane departure indicator on many
modern cars).

In each case, the time it takes from a camera observing
something in the real world (what we call “object space”) to the time

that observation is delivered electronically to the end use (display, storage
or some action process) is called “latency”. Latency has many components
(such as transmission time to a remote location), but we will restrict this
discussion to the latency experienced in the video processing chain.

In doing so, we will look at latency with regard to the video “use case”. For
example, a “live” TV show is not really “live” (that is; shown instantaneously)
- indeed, the image you see is likely several seconds delayed (often
deliberately long). Latency always exists simply due to the time needed to
process the imagery through the electronic chain needed to deliver such
beautiful pictures. No one thinks about or cares whether Odell Beckham Jr
actually caught that ball one handed 500 milliseconds before they saw it
on TV but that is definitely what happened.

Now: think about that same half second latency applied to alerting you
that a car is rapidly approaching your car in your blind spot; that car has

travelled three car-lengths or more in that time. If you are looking to
change lanes, your blind spot detector needs to send that alert in 50

milliseconds, not 500.

Imagine how latency could affect a pilot using a video
display in a degraded visual environment (fog,

smoke, dust) or a surgeon using a video-
guided surgical scalpel. This white paper will

examine some applications where real-time
video data latency is critical, and explore

some of the system contributors to
latency. It concludes with a review of

some available COTS technology that
addresses low latency video/ image
processing requirements.

In systems where video data is
presented to a human via a display, we

note latency as “glass to glass” (that is
to say the “glass” of the camera lens

to the “glass” of the display). In other
applications, latency is expressed

as “glass to action” (the time it
takes for the imagery seen by

 The two most common video standards in the world are 60 frames per second (USA and many others) and 50
frames per second (UK, Europe and many others). Video images are composed of a series of “frames” (a frame

being is composed of the entire image captured). In digital formats, standard definition video (SD), a frame is 640
pixels wide x 480 pixels high (a pixel being the smallest image element).

WHITE PAPER 3

the camera to be captured and processed to the point that it can initiate some
activity, such as illuminate that little car indicator in your wing mirror).

Note: where video is stored, latency is generally not considered, except in
the ability to store video at the rate it is collected. This paper will examine
three image system types where the functions noted previously are used;
degraded visual environment (DVE) visualization, autonomous vehicle
operation, and active protection systems (APS) operation.

Video Latency Requirements for a Degraded
Visual Environment Vision System
Tactical operations have always been at the mercy of the physical
environment. Way back in time, it was cold, heat, terrain and so on
that drove military requirements for equipment. In the 20th century,
operations expanded to darkness, bad weather and so on. Today,
operating sophisticated machines in extreme conditions, such as landing
a helicopter in a “degraded” visual environment (darkness, fog, smoke,
blowing sand, dust and snow) is essential for successful operations.
These operations are extremely dangerous (indeed, according to one
source, over 100 aircraft have been lost in the last 15 years due purely to
loss of visibility and subsequent crashes).

To mitigate this danger, several DVEprograms have been established to
equip these platforms with enhanced vision systems that utilize multiple
sensors that “see” the environment in different spectral domains that
penetrate obscurants; low-light TV (LLTV, operating beyond normal
human vision) cameras; infra-red (IR) cameras; millimeter wave (MMW)
radar and LIDAR. These sensors, situated outside the aircraft, provide
video data/imagery that is processed into a composite (incorporating the
best aspects of each sensor type) display for the operator. Because, in
this case, the operator is not seeing “out the window”, the resulting video
display must be as “real time” as possible. Latency, then, is a critical design
driver in DVE systems.

Figure 1 shows a simplified block diagram of the processing stages in
such a system. On the “front end”, video from a sensor (or sensors) is

passed (over Gigabit Ethernet – GbE - in this case) to the “capture and
condition” stage. (Most often, this is an FPGA processor). This pre-
processor provides a very fast means of preparing and inputting video
data to system memory via very fast Direct Memory Access (DMA) for
use by a general purpose processor (GPP, sometimes called a CPU)
and graphics processing unit where salient information is extracted
from each sensor output and aggregated (often with associated,
stored a priori data) into an operator-understandable display (called a
“visualization”).

Generally, images from the various image sources are “fused” into a
single image with symbology overlays to indicate important features
within the image. DVE systems have a typical latency requirement of
60ms glass-to-glass as a minimum - but less is very desirable. When
considering the latency inherent in the sensor readouts, the display itself
and the huge task of analyzing and fusing all this video, it is clear that
this leaves little time for the actual capture (or “ingest”) of the video at the
“capture/condition” stage. Typically, this is 15ms or less.

Video Latency Requirements for
Autonomous Vehicle Applications
It’s not hard to see the similarities between the DVE system and autonomous
vehicle sensor-based systems. Both require multiple sensors, operating in
different spectral domains and (in the main) within semi- or non-cooperative
environments that often are degraded by dust, fog and so on.

Figure 1: Simplified System Components for a sample Degraded Visual Environment System

There is considerable debate about this figure. One
famous study indicates that 80Ms is the highest

value acceptable – based on studies using indirect
vision hardware, others say that 60Ms (which

happens to be the brain’s “look-ahead” predictive
processing threshold).

WHITE PAPER 4

The principle difference between the two is the fact that the DVE system
provides a rich display to an operator that advises an action, whereas the
autonomy system initiates that action itself. (There are also systems that
provide semi-autonomous functions where only some vehicle functions
are autonomous and others are dependent on the operator).

The consideration of latency is inextricably tied to the operational
environment and mode. An aircraft (which operates in 3D space) has
generally unobscured (albeit often degraded) lines of sight and usually
is separated from objects by relatively large distances - so latency
and operator reaction time form one equation. A vehicle travelling on
a freeway at 80mph, a few feet away from another vehicle (which is
operating according to an unknowable behavior) and where there are
few clear lines of sight to potential hazards, represents another. More
to the point, full autonomy requires the vehicle to take action itself.
This theoretically eliminates the typical reaction time (500 ms, minus
the brain’s predictive 60ms) of a human that is largely the process of
“deciding what to do”. The autonomous system must work at least this
well. Given that humans are really quite good at making decisions based
on sparse data sets; have well “fused” sensors (sight, hearing, inertial)
that are steerable; and have experience with predicting human behavior,
the autonomous system must have more (and better sensors) to achieve
the same situational understanding.

More sensors means faster ingest and processing. The “decision engine”,
utilizing a combination of sensor data (expressly not imagery – rather,
data parsed from imagery) and learned, “experiential” programming (and
likely some a priori data driven from stored maps) can make a decision
faster than a human - but in order to make the right decision (in all
circumstances) requires more data.

Some time is saved by this faster decision process, but some is lost in
the additional sensor ingest and processing. On the plus side, again,
the system does not have to waste time making the pretty picture that
humans can understand; it simply analyzes the data and controls the
vehicle accordingly. Given the use case, environment and operational
scenario, a glass-to-action response time should look to be 40ms (about
the time that vehicles with a closing speed of 80 mph can travel over 4
feet) to be effective.

Figure 2 shows a simplified block diagram of such a system, where a
GbE sensor suite connects to an FMC-based interface to a 3U VPX FPGA
processor - which in turn connects to a GPP and GPU working together
to issue commands in an I/O module. This arrangement is architecturally
very similar to that of a DVE application (note the elimination of the display
and HMI (Human-Machine Interface) and addition of a control element).

Video Processing for Active Protection Systems
The third application example where real time low latency video is
required is an active protection system (APS). Active protection systems
provide protection to military vehicles by providing a counter to offensive
weapons. Rather than surviving a “hit” by heavy armor, these systems
either “spoof” or destroy incoming threats such as rocket-propelled
grenades, mortars or gunfire before they hit. These systems utilize various
sensors (essentially the same collection used in DVE and autonomy, but in
different modalities) to detect, track and identify incoming projectiles and
direct an appropriate counter response based on that knowledge.

The operation of these systems follows a very tight time line. For example,
an RPG-7 (a common anti-tank weapon) has an effective range of about
1km. Assuming it is fused at 900m, its time-of-flight from launch to
impact is about five seconds.

Figure 2: Simplified Autonomous Vehicle Video Processing Subsystem

This may seem a very small distance, but 40 ms
is only the time needed to initiate the action, not
the time to accomplish it. Vehicle response is a

dominant factor; the vehicle must move and settle in
a stable state for the maneuver to be successful.

WHITE PAPER 5

Presuming one second for detection, correlation and confirmation by
multiple sensors and establishment of a track in another 100ms or so, the
projectile will have traveled about 300 meters (one third the distance to the
target). The initiation of a counter weapon and its launch must then occur
very quickly (and in cases where active tracking of both the incoming and
outgoing ordinance takes place, a very fast control loop is required).

If the protective response takes one second (including time of flight for
the counter weapon), the incoming projectile would be dangerously close
indeed (easily within 300 meters) and that’s the easy case; imagine a
threat that is a half or a third of that distance - or a much faster weapon.

Latency in this system is obviously demanding and glass-to-action
(counter weapon initiation) is typically under 25ms (the time it takes the
RPG to travel about 300 feet). An active-protection processing architecture
is like that shown in earlier block diagrams; however, here the system is
totally non-imaging but must do the additional work of threat identification,
counter weapon selection, precision tracking and kill assessment.

 In all three of these systems, GPU or GPP processing merging real-time
data with a priori data is required to speed visualization generation and/or
the decision processing. In each case, experiential (cognitive) processing
is to be expected to be present.

Contributors to Video Latency in System Design
As we have seen, the basic architecture of many video/image processing
subsystems is remarkably similar; sensor data/imagery is ingested and
pre-processed in a “capture/condition” stage. Salient data is extracted in
this stage and sent via high-speed interface to the analytical stage where
suitable visualizations or action initiations are created. The computations
undertaken in these stages (and in which stage they are conducted) vary
with the application, but often include; compression, feature extraction, de-
warping, contrast enhancement, optical flow, edge detection, cross domain
correlation, motion tracking and image and data fusion to name a few.

In a properly designed subsystem, these operations are hosted in the
stage best suited for the purpose. For example; any computation that
reduces the bit rate of the data flow (such as Bayer encoding) should
be as close to the source as possible. A keen focus on the specific
data that is most important to the functionality needed is essential to
avoid processing “un-interesting” data and wasting precious processing
resources, leading to increased latency. Clearly, latency is affected by the
application of computing resources to algorithms - but it is also impacted
by the type of processor and transfer technology employed.

Compression Latency
Due to bit rate and volume, many video systems utilize compression
techniques to reduce data bandwidth or storage size. The most common
of these is video (as in MPEG) compression - algorithms that take
advantage of image features such as a static background that can be
represented with fewer bits.

Usage of compression algorithms makes the data size dependent on the
image content and results in a variable bit rate (VBR) for transfer. Variable
bit rate systems require a data transport mechanism to be designed for the
worst-case bandwidth requirements, otherwise a system may drop data or
exhibit buffering and variable latency. In some systems, a maximum data
transport bandwidth is established and compression algorithms must
sacrifice video quality to fit within these constraints.

Video compression algorithms may require a minimum data set such as
a full line or frame to start processing; thus, a certain amount of buffering
may be required, adding to total system latency. In our three examples, it
may be impractical to employ certain compression algorithms (especially
ones in software as these are known to add significant latency). However,
some compression could perhaps be implemented with a hardware
streaming architecture inside the pre-processor FPGA such that time lost
in compression is gained in reduced transfer time.

Figure 3: Simplified Active Protection Video Response system

WHITE PAPER 6

Another form of compression is data compression. In many applications
and functionalities, it is not necessary to process the entire image
produced by a camera. Just as MPEG compression only transfers content
that changes frame-to-frame, data compression only passes “interesting”
content from the frame. This could be motion (vector, velocity), detection
of a contiguous group (“blob”) of pixels, the edges of objects in the frame
or the point-cloud generated by a LIDAR.

Thus, it can be readily seen that in systems that do not require a display
(and the resulting visualization generation) data compression is dominant
and video compression (except for non-real-time archival recording) is
not. In cases where visualization is needed, video compression may be
dominant. However, in the cases mentioned, data compression is always
performed in one form or another.

Transfer Latency
As noted, the three applications discussed have three different use cases
which require a variety of processing functionalities; streaming, pre-
processing, threat/obstacle detection, video fusion, and so on. Where
in the architecture these functionalities are performed is important in
optimizing latency performance. (Indeed, the expression ‘use the right tool
for the job’ applies here). The most appropriate processing tool for each
task; FPGA, GPP, and GPU is employed where it is most effective.

While there is a trend to converge these three processing elements,
today, it is generally most economical to consider these as two or three
separate cards in a system. In our representative subsystem designs, we
have chosen PCIe Gen3 as our element-to-element data fabric for its high
data rate (slower fabrics are intolerably latent). Latency is also reduced by
leveraging PCIe Gen3 DMA (wherein data is written directly to memory).

Processing Latency
The central piece of the processing control system is the general purpose
processor. The GPP can provide a variety of functions; data may be
correlated here, analyzed to discriminate obstacles or threats or the GPP
may simply be a host controller for faster pre-process and GPU stages.
This sort of decision based processing can require significant multi-
threaded parallelism, analyzing multiple scenarios and data sets.

Where real-time deterministic operation is needed, selection of the
appropriate GPP is essential. The Intel® Xeon® processor featured on
Abaco’s SBC328 (shown) 3U VPX single board computer has significant
dedicated parallel cores, providing ample power and parallelism for these
demanding applications.

The GPU stage is generally where the “heavy lifting” takes place. It is here
where “learning” and image fusion takes place, where Visualizations are
generated and where data is ultimately correlated, analyzed and reduced to
action. Generally, ‘the more cores the better’ in this stage and here we show
Abaco’s GRA113 GPU with 640 cores supporting v3.0 CUDA™ (as well as
OpenGL®) and a 16-lane PCIe™ interface.

Code Latency
Programming is obviously the most crucial part of the design. The
optimum hardware implementation cannot fully make up for non-
optimized code. Of course, it is the use case that dominates the software
employed but, as noted, many functionalities, such as edge detection,
de-warping and fusion are common. While the algorithms behind
functionalities are readily available (including on-line) writing efficient
code to implement them can be tedious, time-consuming and fraught
with inefficiencies.

Not only are these inefficiencies creators of latency, they can also prevent
code from being certifiable to safety standards (clearly important in all
the cases described herein). Abaco has developed a series of tools to
assist in the development of code for complex computer architectures
called AXIS. For image processing, visualization and graphics, we
offer AXIS ImageFlex™, a library of optimized code suitable for direct
incorporation into higher-level applications. AXIS ImageFlex reduces the
time and inefficiency associated with many functionalities often by 40-
50% in execution speed and lines of code by a huge 500%.

Other tools in the AXIS family work to analyze and optimize multi-
processor architectures.

Benefits of Building Video Systems on an Adaptive
FPGA-Based Modular COTS Approach
Leveraging commercial technology can have significant benefits in
computer systems; development costs are reduced, upgradability is
improved, and obsolescence management is simpler.

The three applications presented here are highly demanding - not only in
terms of processing latency, but also because these applications are evolving
constantly, accommodating new sensors and requiring new functionalities.
Leveraging an extremely adaptable platform like 3U VPX allows performance
equal to bespoke designs in a COTS approach.

Nowhere in these systems is this more evident than in the pre-processing
stage, with the inclusion of a powerful FPGA employing a modular sensor
interface. By leveraging FPGA technology, these systems are readily

As we have seen management of latency in systems reliant on video
sensors is a critical design driver. It is only through the use of the right
tools and techniques that latency challenges can be overcome. An
optimum design can be achieved through the use of powerful COTS
processors, connected via efficient interfaces and running efficient
software. Abaco Systems provides these elements and has the expertise
to assemble these elements within higher-level systems to achieve end
performance goals.

ImageFlex Is a trademark of Abaco Systems. CUDA is a trademark, of NVIDIA
Corporation. Intel and Xeon are registered trademarks of Intel Corporation. Xilinx is a
registered trademark, and Ultrascale is a trademark, of Xilinx Inc. OpenGL is a registered
trademark of Silicon Graphics Inc. PCIe is a trademark of PCI-SIG. All other trademarks
are the property of their respective owners.

WHITE PAPER 7

WE INNOVATE. WE DELIVER. YOU SUCCEED.
Americas: 866-OK-ABACO or +1-866-652-2226 Asia & Oceania: +81-3-5544-3973
Europe, Africa, & Middle East: +44 (0) 1327-359444
Locate an Abaco Systems Sales Representative visit: abaco.com/products/sales

abaco.com @AbacoSys
©2017 Abaco Systems. All Rights Reserved. All other brands, names or trademarks are property
of their respective owners. Specifications are subject to change without notice.

08/17

adaptable to diverse I/O interfaces and protocols utilizing technologies
like VITA 57.4 defined FPGA mezzanine cards (FMC) and Abaco’s patented
Micro Mezzanine System (MMS). On the sensor processing side, products
like the powerful VP880 and the FMC432 enable 10 Gigabit Ethernet to
connect to Xilinx®’s most powerful Ultrascale™ processing chip via the
standard FMC+ interface.

This 3U VPX board, built on the power and flexibility of the OpenVPX
standard, is capable of PCIe Gen3 and has enabled dedicated peer-to-peer
DMA links from card to card meaning low, predictable latency transfer
of large data sets. In terms of the general purpose processors and
graphics processing units, Abaco provides the most up-to-date processor
technology based on these form factors.

Abaco Systems, within the framework of open standards, provides C
OTS hardware, design tools and application knowledge to fully
support development, deployment and lifetime support of these
critical applications.

Conclusion

