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Introduction

Video processing is ubiquitous in our everyday lives, and dates back nearly a century 
(electronic image transmission was first demonstrated 90 years ago). Transmission 
of images by digital means is 48 years old and commercial digital video 30 years old. 

In recent years, improvements in video quality have skyrocketed; HD 
(“High Definition”) video only within the 21st century and 4K video in the 
last 10 years. This has been a dramatic change. Consider that, in terms 
of pixels , HD represents a 200% - 575% increase, and full 4K video is a 
4000% increase over the “standard definition” (SD) video employed up 
until 2000 (Super Bowl XXXIV was the first HD broadcast). As each pixel 
needs to be individually processed and transmitted, the need for the most 
powerful possible computing capability has risen in similarly exponential 
fashion, with a requirement (in the 60 frames per second case) to process 
over 18 Gigabytes of (unencoded) data per second – as opposed to 0.44 
Gigabits/second for standard definition. 

The challenges of handling this volume of data have been met with new 
processor technologies and systems designs. Graphics processing unit 
(GPU) technology, with its massively parallel capability, has been 
a huge enabler, delivering crisp, compacted HD and 4K+ 
video. However, a GPU can only process what it has in 
memory; getting that video into memory is another 
matter; the capture of this high-density video data in 
anything close to “real time” is a real problem - the 
“latency” problem.

Video systems are everywhere 
- from internet cat videos to 
medical imaging, military 
surveillance systems and 
rapidly-evolving autonomous 
vehicle applications. Digital 
video-based systems 
generally provide one or 
more of three, basic functions; 
image display (your TV set), image 
storage (for later analysis or viewing - 
like an MRI scan); or image data processing 
to extract information that directly initiates 
action (like the lane departure indicator on many 
modern cars). 

In each case, the time it takes from a camera observing 
something in the real world (what we call “object space”) to the time 

that observation is delivered electronically to the end use (display, storage 
or some action process) is called “latency”. Latency has many components 
(such as transmission time to a remote location), but we will restrict this 
discussion to the latency experienced in the video processing chain. 

In doing so, we will look at latency with regard to the video “use case”. For 
example, a “live” TV show is not really “live” (that is; shown instantaneously) 
- indeed, the image you see is likely several seconds delayed (often 
deliberately long). Latency always exists simply due to the time needed to 
process the imagery through the electronic chain needed to deliver such 
beautiful pictures. No one thinks about or cares whether Odell Beckham Jr 
actually caught that ball one handed 500 milliseconds before they saw it 
on TV but that is definitely what happened. 

Now: think about that same half second latency applied to alerting you 
that a car is rapidly approaching your car in your blind spot; that car has 

travelled three car-lengths or more in that time. If you are looking to 
change lanes, your blind spot detector needs to send that alert in 50 

milliseconds, not 500. 

Imagine how latency could affect a pilot using a video 
display in a degraded visual environment (fog, 

smoke, dust) or a surgeon using a video-
guided surgical scalpel.  This white paper will 

examine some applications where real-time 
video data latency is critical, and explore 

some of the system contributors to 
latency. It concludes with a review of 

some available COTS technology that 
addresses low latency video/ image 
processing requirements. 

In systems where video data is 
presented to a human via a display, we 

note latency as “glass to glass” (that is 
to say the “glass” of the camera lens 

to the “glass” of the display). In other 
applications, latency is expressed 

as “glass to action” (the time it 
takes for the imagery seen by 

  The two most common video standards in the world are 60 frames per second (USA and many others) and 50 
frames per second (UK, Europe and many others). Video images are composed of a series of “frames” (a frame 

being is composed of the entire image captured). In digital formats, standard definition video (SD), a frame is 640 
pixels wide x 480 pixels high (a pixel being the smallest image element).
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the camera to be captured and processed to the point that it can initiate some 
activity, such as illuminate that little car indicator in your wing mirror). 

Note: where video is stored, latency is generally not considered, except in 
the ability to store video at the rate it is collected. This paper will examine 
three image system types where the functions noted previously are used; 
degraded visual environment (DVE) visualization, autonomous vehicle 
operation, and active protection systems (APS) operation. 

Video Latency Requirements for a Degraded  
Visual Environment Vision System
Tactical operations have always been at the mercy of the physical 
environment. Way back in time, it was cold, heat, terrain and so on 
that drove military requirements for equipment. In the 20th century, 
operations expanded to darkness, bad weather and so on.  Today, 
operating sophisticated machines in extreme conditions, such as landing 
a helicopter in a “degraded” visual environment (darkness, fog, smoke, 
blowing sand, dust and snow) is essential for successful operations. 
These operations are extremely dangerous (indeed, according to one 
source, over 100 aircraft have been lost in the last 15 years due purely to 
loss of visibility and subsequent crashes). 

To mitigate this danger, several DVEprograms have been established to 
equip these platforms with enhanced vision systems that utilize multiple 
sensors that “see” the environment in different spectral domains that 
penetrate obscurants;  low-light TV (LLTV, operating beyond normal 
human vision) cameras; infra-red (IR) cameras;  millimeter wave (MMW) 
radar and LIDAR.  These sensors, situated outside the aircraft, provide 
video data/imagery that is processed into a composite (incorporating the 
best aspects of each sensor type) display for the operator. Because, in 
this case, the operator is not seeing “out the window”, the resulting video 
display must be as “real time” as possible. Latency, then, is a critical design 
driver in DVE systems.

Figure 1 shows a simplified block diagram of the processing stages in 
such a system. On the “front end”, video from a sensor (or sensors) is 

passed (over Gigabit Ethernet – GbE - in this case) to the “capture and 
condition” stage. (Most often, this is an FPGA processor). This pre-
processor provides a very fast means of preparing and inputting video 
data to system memory via very fast Direct Memory Access (DMA) for 
use by a general purpose processor (GPP, sometimes called a CPU) 
and graphics processing unit where salient information is extracted 
from each sensor output and aggregated (often with associated, 
stored a priori data) into an operator-understandable display (called a 
“visualization”). 

Generally, images from the various image sources are “fused” into a 
single image with symbology overlays to indicate important features 
within the image. DVE systems have a typical latency requirement of 
60ms glass-to-glass  as a minimum - but less is very desirable. When 
considering the latency inherent in the sensor readouts, the display itself 
and the huge task of analyzing and fusing all this video, it is clear that 
this leaves little time for the actual capture (or “ingest”) of the video at the 
“capture/condition” stage. Typically, this is 15ms or less.

Video Latency Requirements for 
Autonomous Vehicle Applications
It’s not hard to see the similarities between the DVE system and autonomous 
vehicle sensor-based systems. Both require multiple sensors, operating in 
different spectral domains and (in the main) within semi- or non-cooperative 
environments that often are degraded by dust, fog and so on. 

Figure 1: Simplified System Components for a sample Degraded Visual Environment System

There is considerable debate about this figure. One 
famous study indicates that 80Ms is the highest 

value acceptable – based on studies using indirect 
vision hardware, others say that 60Ms (which 

happens to be the brain’s “look-ahead” predictive 
processing threshold).
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The principle difference between the two is the fact that the DVE system 
provides a rich display to an operator that advises an action, whereas the 
autonomy system initiates that action itself. (There are also systems that 
provide semi-autonomous functions where only some vehicle functions 
are autonomous and others are dependent on the operator). 

The consideration of latency is inextricably tied to the operational 
environment and mode. An aircraft (which operates in 3D space) has 
generally unobscured (albeit often degraded) lines of sight and usually 
is separated from objects by relatively large distances - so latency 
and operator reaction time form one equation. A vehicle travelling on 
a freeway at 80mph, a few feet away from another vehicle (which is 
operating according to an unknowable behavior) and where there are 
few clear lines of sight to potential hazards, represents another. More 
to the point, full autonomy requires the vehicle to take action itself. 
This theoretically eliminates the typical reaction time (500 ms, minus 
the brain’s predictive 60ms) of a human that is largely the process of 
“deciding what to do”. The autonomous system must work at least this 
well. Given that humans are really quite good at making decisions based 
on sparse data sets; have well “fused” sensors (sight, hearing, inertial) 
that are steerable; and have experience with predicting human behavior, 
the autonomous system must have more (and better sensors) to achieve 
the same situational understanding. 

More sensors means faster ingest and processing. The “decision engine”, 
utilizing a combination of sensor data (expressly not imagery – rather, 
data parsed from imagery) and learned, “experiential” programming (and 
likely some a priori data driven from stored maps) can make a decision 
faster than a human - but in order to make the right decision (in all 
circumstances) requires more data. 

Some time is saved by this faster decision process, but some is lost in 
the additional sensor ingest and processing. On the plus side, again, 
the system does not have to waste time making the pretty picture that 
humans can understand; it simply analyzes the data and controls the 
vehicle accordingly. Given the use case, environment and operational 
scenario, a glass-to-action response time should look to be 40ms (about 
the time that vehicles with a closing speed of 80 mph can travel over 4 
feet)  to be effective.

Figure 2 shows a simplified block diagram of such a system, where a 
GbE sensor suite connects to an FMC-based interface to a 3U VPX FPGA 
processor - which in turn connects to a GPP and GPU working together 
to issue commands in an I/O module. This arrangement is architecturally 
very similar to that of a DVE application (note the elimination of the display 
and HMI (Human-Machine Interface) and addition of a control element). 

Video Processing for Active Protection Systems
The third application example where real time low latency video is 
required is an active protection system (APS).  Active protection systems 
provide protection to military vehicles by providing a counter to offensive 
weapons. Rather than surviving a “hit” by heavy armor, these systems 
either “spoof” or destroy incoming threats such as rocket-propelled 
grenades, mortars or gunfire before they hit. These systems utilize various 
sensors (essentially the same collection used in DVE and autonomy, but in 
different modalities) to detect, track and identify incoming projectiles and 
direct an appropriate counter response based on that knowledge. 

The operation of these systems follows a very tight time line. For example, 
an RPG-7 (a common anti-tank weapon) has an effective range of about 
1km. Assuming it is fused at 900m, its time-of-flight from launch to 
impact is about five seconds. 

Figure 2: Simplified Autonomous Vehicle Video Processing Subsystem

This may seem a very small distance, but 40 ms 
is only the time needed to initiate the action, not 
the time to accomplish it. Vehicle response is a 

dominant factor; the vehicle must move and settle in 
a stable state for the maneuver to be successful.
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Presuming one second for detection, correlation and confirmation by 
multiple sensors and establishment of a track in another 100ms or so, the 
projectile will have traveled about 300 meters (one third the distance to the 
target). The initiation of a counter weapon and its launch must then occur 
very quickly (and in cases where active tracking of both the incoming and 
outgoing ordinance takes place, a very fast control loop is required).  

If the protective response takes one second (including time of flight for 
the counter weapon), the incoming projectile would be dangerously close 
indeed (easily within 300 meters) and that’s the easy case; imagine a 
threat that is a half or a third of that distance - or a much faster weapon.

Latency in this system is obviously demanding and glass-to-action 
(counter weapon initiation) is typically under 25ms (the time it takes the 
RPG to travel about 300 feet). An active-protection processing architecture 
is like that shown in earlier block diagrams; however, here the system is 
totally non-imaging but must do the additional work of threat identification, 
counter weapon selection, precision tracking and kill assessment.  

 In all three of these systems, GPU or GPP processing merging real-time 
data with a priori data is required to speed visualization generation and/or 
the decision processing. In each case, experiential (cognitive) processing 
is to be expected to be present.

Contributors to Video Latency in System Design
As we have seen, the basic architecture of many video/image processing 
subsystems is remarkably similar; sensor data/imagery is ingested and 
pre-processed in a “capture/condition” stage. Salient data is extracted in 
this stage and sent via high-speed interface to the analytical stage where 
suitable visualizations or action initiations are created. The computations 
undertaken in these stages (and in which stage they are conducted) vary 
with the application, but often include; compression, feature extraction, de-
warping, contrast enhancement, optical flow, edge detection, cross domain 
correlation, motion tracking and image and data fusion to name a few. 

In a properly designed subsystem, these operations are hosted in the 
stage best suited for the purpose. For example; any computation that 
reduces the bit rate of the data flow (such as Bayer encoding) should 
be as close to the source as possible. A keen focus on the specific 
data that is most important to the functionality needed is essential to 
avoid processing “un-interesting” data and wasting precious processing 
resources, leading to increased latency. Clearly, latency is affected by the 
application of computing resources to algorithms - but it is also impacted 
by the type of processor and transfer technology employed. 

Compression Latency 
Due to bit rate and volume, many video systems utilize compression 
techniques to reduce data bandwidth or storage size. The most common 
of these is video (as in MPEG) compression - algorithms that take 
advantage of image features such as a static background that can be 
represented with fewer bits. 

Usage of compression algorithms makes the data size dependent on the 
image content and results in a variable bit rate (VBR) for transfer. Variable 
bit rate systems require a data transport mechanism to be designed for the 
worst-case bandwidth requirements, otherwise a system may drop data or 
exhibit buffering and variable latency. In some systems, a maximum data 
transport bandwidth is established and compression algorithms must 
sacrifice video quality to fit within these constraints. 

Video compression algorithms may require a minimum data set such as 
a full line or frame to start processing; thus, a certain amount of buffering 
may be required, adding to total system latency. In our three examples, it 
may be impractical to employ certain compression algorithms (especially 
ones in software as these are known to add significant latency). However, 
some compression could perhaps be implemented with a hardware 
streaming architecture inside the pre-processor FPGA such that time lost 
in compression is gained in reduced transfer time.

Figure 3: Simplified Active Protection Video Response system
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Another form of compression is data compression. In many applications 
and functionalities, it is not necessary to process the entire image 
produced by a camera. Just as MPEG compression only transfers content 
that changes frame-to-frame, data compression only passes “interesting” 
content from the frame. This could be motion (vector, velocity), detection 
of a contiguous group (“blob”) of pixels, the edges of objects in the frame 
or the point-cloud generated by a LIDAR. 

Thus, it can be readily seen that in systems that do not require a display 
(and the resulting visualization generation) data compression is dominant 
and video compression (except for non-real-time archival recording) is 
not. In cases where visualization is needed, video compression may be 
dominant. However, in the cases mentioned, data compression is always 
performed in one form or another.

Transfer Latency 
As noted, the three applications discussed have three different use cases 
which require a variety of processing functionalities; streaming, pre-
processing, threat/obstacle detection, video fusion, and so on. Where 
in the architecture these functionalities are performed is important in 
optimizing latency performance. (Indeed, the expression ‘use the right tool 
for the job’ applies here). The most appropriate processing tool for each 
task; FPGA, GPP, and GPU is employed where it is most effective. 

While there is a trend to converge these three processing elements, 
today, it is generally most economical to consider these as two or three 
separate cards in a system. In our representative subsystem designs, we 
have chosen PCIe Gen3 as our element-to-element data fabric for its high 
data rate (slower fabrics are intolerably latent). Latency is also reduced by 
leveraging PCIe Gen3 DMA (wherein data is written directly to memory). 

Processing Latency 
The central piece of the processing control system is the general purpose 
processor. The GPP can provide a variety of functions; data may be 
correlated here, analyzed to discriminate obstacles or threats or the GPP 
may simply be a host controller for faster pre-process and GPU stages. 
This sort of decision based processing can require significant multi-
threaded parallelism, analyzing multiple scenarios and data sets. 

Where real-time deterministic operation is needed, selection of the 
appropriate GPP is essential. The Intel® Xeon® processor featured on 
Abaco’s SBC328 (shown) 3U VPX single board computer has significant 
dedicated parallel cores, providing ample power and parallelism for these 
demanding applications. 

The GPU stage is generally where the “heavy lifting” takes place. It is here 
where “learning” and image fusion takes place, where Visualizations are 
generated and where data is ultimately correlated, analyzed and reduced to 
action. Generally, ‘the more cores the better’ in this stage and here we show 
Abaco’s GRA113 GPU with 640 cores supporting v3.0 CUDA™ (as well as 
OpenGL®) and a 16-lane PCIe™ interface.

Code Latency 
Programming is obviously the most crucial part of the design. The 
optimum hardware implementation cannot fully make up for non-
optimized code. Of course, it is the use case that dominates the software 
employed but, as noted, many functionalities, such as edge detection, 
de-warping and fusion are common. While the algorithms behind 
functionalities are readily available (including on-line) writing efficient 
code to implement them can be tedious, time-consuming and fraught 
with inefficiencies. 

Not only are these inefficiencies creators of latency, they can also prevent 
code from being certifiable to safety standards (clearly important in all 
the cases described herein).  Abaco has developed a series of tools to 
assist in the development of code for complex computer architectures 
called AXIS. For image processing, visualization and graphics, we 
offer AXIS ImageFlex™, a library of optimized code suitable for direct 
incorporation into higher-level applications. AXIS ImageFlex reduces the 
time and inefficiency associated with many functionalities often by 40-
50% in execution speed and lines of code by a huge 500%.

Other tools in the AXIS family work to analyze and optimize multi-
processor architectures.

Benefits of Building Video Systems on an Adaptive  
FPGA-Based Modular COTS Approach
Leveraging commercial technology can have significant benefits in 
computer systems; development costs are reduced, upgradability is 
improved, and obsolescence management is simpler. 

The three applications presented here are highly demanding - not only in 
terms of processing latency, but also because these applications are evolving 
constantly, accommodating new sensors and requiring new functionalities. 
Leveraging an extremely adaptable platform like 3U VPX allows performance 
equal to bespoke designs in a COTS approach. 

Nowhere in these systems is this more evident than in the pre-processing 
stage, with the inclusion of a powerful FPGA employing a modular sensor 
interface. By leveraging FPGA technology, these systems are readily 



As we have seen management of latency in systems reliant on video 
sensors is a critical design driver. It is only through the use of the right 
tools and techniques that latency challenges can be overcome. An 
optimum design can be achieved through the use of powerful COTS 
processors, connected via efficient interfaces and running efficient 
software. Abaco Systems provides these elements and has the expertise 
to assemble these elements within higher-level systems to achieve end 
performance goals.    

ImageFlex Is a trademark of Abaco Systems. CUDA is a trademark, of NVIDIA 
Corporation. Intel and Xeon are registered trademarks of Intel Corporation. Xilinx is a 
registered trademark, and Ultrascale is a trademark, of Xilinx Inc. OpenGL is a registered 
trademark of Silicon Graphics Inc. PCIe is a trademark of PCI-SIG. All other trademarks 
are the property of their respective owners.
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adaptable to diverse I/O interfaces and protocols utilizing technologies 
like VITA 57.4 defined FPGA mezzanine cards (FMC) and Abaco’s patented 
Micro Mezzanine System (MMS). On the sensor processing side, products 
like the powerful VP880 and the FMC432 enable 10 Gigabit Ethernet to 
connect to Xilinx®’s most powerful Ultrascale™ processing chip via the 
standard FMC+ interface. 

This 3U VPX board, built on the power and flexibility of the OpenVPX 
standard, is capable of PCIe Gen3 and has enabled dedicated peer-to-peer 
DMA links from card to card meaning low, predictable latency transfer 
of large data sets. In terms of the general purpose processors and 
graphics processing units, Abaco provides the most up-to-date processor 
technology based on these form factors. 

Abaco Systems, within the framework of open standards, provides C 
OTS hardware, design tools and application knowledge to fully  
support development, deployment and lifetime support of these  
critical applications.

Conclusion


