
E M B E D D E D S O F T W A R E W
H

I
T

E
P

A
P

E
R

w w w . m e n t o r . c o m

ENSURING THE SUCCESS OF YOUR
RISC-V PRODUCT WITH A COMMERCIAL-
GRADE SOFTWARE DEVELOPMENT
ECOSYSTEM

MENTOR EMBEDDED SOFTWARE DIVISION

w w w. m ento r.co m
2 [8]

Ensuring the Success of Your RISC-V Product with a Commercial-Grade Software Development Ecosystem

In the nine years since the initial public release of an open-source microprocessor Instruction Set Architecture,
RISC-V has grown from an academic innovation into a compelling option for mainstream products for a wide
variety of embedded applications. Storage giant Western Digital is not only moving production hardware to RISC-V,
they have released their own RISC-V based SweRV Core™ to the open-source community;¹ and graphics leader
NVIDIA has decided to base their next-generation Falcon logic controller on RISC-V.² Semico Research estimates that
by 2025 there will be over 62 billion RISC-V-based devices shipped globally.³

But what exactly is RISC-V, and how would you implement your design when targeting RISC-V? As more hardware
implementations and development boards come to market for entry-level designers, Mentor, a Siemens Business, is
stepping in to offer toolchain services that will enable your embedded applications to take maximum advantage
of RISC-V hardware

In this white paper we will explore:

 ■ The History of RISC-V

 ■ RISC-V Benefit

 ■ An Overview of the RISC-V Architecture

 ■ Toolchain Considerations for RISC-V-based Commercial Products

 ■ Sample Commercial-grade RISC-V SDKs

RISC-V HISTORY
In 2010 computer science experts Krste Asanović and David Patterson, along with a group of graduate students at
the University of California at Berkeley ParLab, decided as part of their research into advanced parallel computing,
to develop and publish an open-source compute architecture. The reasoning behind their decision was that in
general, RISC-based (Reduced Instruction Set Computer) ISAs (Instruction Set Architectures) published in the prior
twenty years possessed a majority of commonalities, with few unique differences between them. Their frustration
was that the majority of RISC-based ISAs were owned and copyrighted by CPU vendors that, with only a few limited
exceptions, charged royalty fees for their use in end products. Further, these vendors might release limited
documentation, often only under non-disclosure agreement, and rarely gave insight into the original decisions that
drove their architectural design choices.⁴ In May of 2011, with the Berkeley group’s initial ISA publication, the RISC-V
initiative was born.

Following that initial publication, the non-profit RISC-V Foundation formed in 2015, was established to expand upon
a growing community of contributors, formalizing their ISA and placing it in the public domain, available via
GitHub. At that point, RISC-V became royalty-free, usable by anyone. Not just for research or education, and not just
for prototyping, but for production. You never have to pay a fee to use the RISC-V ISA, no matter how many times
you download it, and no matter how many devices you use it in. You also don’t have to be a member of the RISC-V
Foundation to download the ISA. The foundation and membership exist to promote the RISC-V initiative and to
vote and approve updates to the ISA via extensions. Use of the architecture is open to all who can access GitHub.

RISC-V BENEFITS
RISC-V provides a new option for microcontroller and microprocessor designs. Embedded designers now have a
choice for basing their products either on one of several proprietary commercial processor architectures, or using
the RISC-V open architecture with no royalty fees or charges per use. In many markets where the number of
processors in a production series can potentially number in the millions, the cost savings from eliminating paying
royalty fees can be substantial. Several disk drive vendors and automotive companies are already heavily invested in
RISC-V projects to reduce costs.

w w w. m ento r.co m
3 [8]

Ensuring the Success of Your RISC-V Product with a Commercial-Grade Software Development Ecosystem

And the upsides extend beyond cost. Defense and aerospace designers have historically needed to enter into legal
negotiations and pay additional fees when they have to consider modifying a proprietary ISA for specialized
applications, or alternatively they had to come up with their own architecture from scratch. Now they can
download the well-documented open-source RISC-V ISA for free, and modify it for their own specialized use. Per
the language of the RISC-V open license, users can modify the ISA at will, with no obligation to upload or publish
their modifications, companies can keep their modified RISC-V-based ISA proprietary.

AN OVERVIEW OF THE RISC-V ARCHITECTURE
RISC-V is a processing architecture, but not a processor implementation. The Berkeley designers were keen to avoid
any bias towards any particular microarchitecture, or silicon technology as they developed the ISA. RISC-V can be
implemented in an ASIC or FPGA, and on any process node. The first processor implementations created by the
Berkeley team were developed in the open-source Chisel hardware description language, and have also been
posted publicly for anyone’s use. In addition, the list of silicon vendors offering RISC-V based hardware is rapidly
growing. At publication of this article, over 70 RISC-V processor implementations are listed on the Foundation
website.

The RISC-V architecture is modular, starting from the base specification that supports 32 and 64-bit integer ISAs. A
128-bit integer ISA is also defined, but intentionally left open as more designs become available using these denser
memory maps. The base ISA is broken into two volumes, the User-Level Architecture (Volume I), and the Privileged
Architecture (Volume II). The Privileged architecture is designed for isolation of software stack components from
the user portion of the operating system and application code.

Starting from a base ISA and then adding the necessary extensions like single-precision, double-precision, and
quad-precision floating point, packed-SIMD instructions, or virtualization support; RISC-V can address a variety of
system models from small footprint needs, to multi-processor applications, and eventually even DSP applications
using SIMD.

TOOLCHAIN CONSIDERATIONS FOR RISC-V BASED
COMMERCIAL PRODUCTS

With embedded RISC-V processor IP beginning to show up in new products, enabling software developers to port
application code is a key requirement. The compiler, libraries, linker and debugger tool set used to convert
application source code to binary code and get it running on the target hardware, are collectively referred to as a
toolchain. Toolchains integrated into an application development suite to support a specific product are known as
a Software Development Kit (SDK) which is a key part of the ecosystem needed to support RISV-C commercial
product deployment.

There are two open-source compiler framework projects that offer at least a partial solution to the RISC-V toolchain
requirement. The GCC (GNU Compiler Collection) project is an open-source initiative that provides compiler
support for many of the RISC-V standard ISA variants as shown in Table 1. GCC also offers support for both Linux
and “Bare-metal” (RTOS and no operating system) targets. GCC versions 7.1 and higher include support for RISC-V.
The LLVM project is a newer open-source compiler framework initiative which also provides compiler backend and
library support for RISC-V standard ISA variants as shown in Table 1. LLVM versions 9.0.0 and higher include support
for RISC-V. The LLVM project has traditionally focused on Linux OS target operating system support. However, there
is growing interest within the LLVM community to extend support for embedded bare-metal target devices.

w w w. m ento r.co m
4 [8]

Ensuring the Success of Your RISC-V Product with a Commercial-Grade Software Development Ecosystem

USING OPEN-SOURCE TOOLCHAINS
While software developers targeting RISC-V devices are certainly free to download GCC or LLVM source code
directly from the projects’ public open-source repositories, this is not usually an efficient first step in porting
application software to a RISC-V processor. Building and validating your own open-source based toolchain is a
complex and lengthy process fraught with many potential pitfalls, especially for those new to building their own
toolchains. Fortunately, many RISC-V chip and IP vendors provide open-source based toolchain reference
distributions to help developers evaluate their IP. While these reference toolchains are useful for evaluating RISC-V
IP, they are not productized solutions to enable developers and end users to deploy software applications to
commercial RISC-V based products.

There are three key requirements to consider when procuring customer-ready open-source based toolchains to
enable developers to use a RISC-V based platform: Commercialization, Customization and Support.

TABLE 1. RISC-V FOUNDATION STANDARD ISA VARIANTS SUPPORTED BY THE GCC AND LLVM COMPILERS

ISA Variant Description ISA Status GCC LLVM

RV32I Base 32-Bit Integer Instruction Set Released X X

RV64I Base 64-Bit Integer Instruction Set Released X X

RV128I Base 128-Bit Integer Instruction Set Released

Zifenci Instruction-Fetch Fence Released X

RV32E Base 32-Bit Integer Instruction Set for Embedded Released X

M Integer Multiplication and Division Released X X

A Atomic Instructions Released X X

Zicsr Control and Status Registers Released

F Single-Precision Floating-Point Released X X

D Double-Precision Floating-Point Released X X

Q Quad-Precision Floating-Point Released

RVWMO Consistency Model Released

L Decimal Floating-Point Future

C Compressed Instructions Released X X

B Bit Manipulation Future

J Dynamically Translated Languages Future

T Transactional Memory Future

P Packed-SIMD Future

V Vector Operations Future

N User-Level Interrupts Future

Zam Misaligned Atomics Released

Ztso Total Store Ordering Released X

w w w. m ento r.co m
5 [8]

Ensuring the Success of Your RISC-V Product with a Commercial-Grade Software Development Ecosystem

TOOLCHAIN COMMERCIALIZATION
Toolchain commercialization is the process of transforming the publicly available open-source code into a tested
and supportable distribution of executable toolchain components and libraries configured to support the target
devices. The two most important toolchain commercialization considerations are selection of the compiler version
as well as the target device variants to be supported. Leveraging the open-source compiler project test suites and
test frameworks, such as DejaGNU, will help provide toolchain test coverage. The devil is in the details in terms of
getting the toolchain executable correctly built and passing the test suites. This can be a daunting task since
open-source software is always under construction. Thousands of community members are working on various
bug fixes and new features at any given time. As a result, there are typically a number of tests in each test suite
which are expected to fail. Differentiating between expected test failures (XFAILS) and real test failures and, of
course, actually resolving the real failures is tedious work requiring highly specialized compiler design domain
knowledge. The end objective is to set up a reliable, repeatable test harness with appropriate toolchain test
coverage which can be re-run whenever needed for ongoing toolchain support. Another key commercialization
consideration is remediation of Common Vulnerabilities and Exposures (CVEs). Applying the correct cybersecurity
patches to toolchain components (usually libraries) during the toolchain build process is essential to producing
high quality toolchain releases for developer SDKs.

TOOLCHAIN CUSTOMIZATION
Toolchain customization provides feature extensions and performance optimizations beyond what is currently
available from the open-source community. For RISC-V, toolchain customization can take the form of compiler
extensions to support hardware vendor-specific RISC-V ISA or customizations enabled via the RISC-V open ISA.
Target-specific application performance optimization is another area of toolchain customization that can help
maximize target hardware application performance. In addition, toolchain customization can also include compiler
bug fixes and new feature completion not yet publicly available from the open-source community. The latest
source code may not always be available via the open-source project’s upstream public repositories. Work in
progress typically resides on private development branches until release to the mainline. Also, there is no overall
open-source project development plan with a fixed delivery schedule for specific new features. Thus toolchain
customization may be needed in order to deliver an optimum well-configured toolchain that meets commercial
RISC-V based product requirements and release schedules.

TOOLCHAIN SUPPORT
Toolchains regularly have CVEs reported against them, including issues in the compiler runtime libraries.
Undiscovered CVEs in compiler runtime libraries get linked into application software and can thus be inadvertently
deployed to customers via a product release. This in turn will create the risk of having to provide a hot-fix software
update to address newly discovered CVEs at some point in the future. In such cases having a toolchain support
contract in place that provides ongoing CVE remediation will ensure your toolchain is ready to build the software
update needed to quickly and effectively resolve such a crisis without having to first sort out potentially years of
toolchain patches and updates. Toolchain long-term support is intended to keep older version toolchains updated
with critical CVE patches and bug fixes while minimizing the total number of overall toolchain changes to reduce
the risk of introducing new issues.

SAMPLE COMMERCIAL-GRADE RISC-V SDKS
Mentor has recently announced GCC and LLVM based sample commercial-grade RISC-V SDKs targeting the SiFive
HiFive Unleashed⁵ reference board. The toolchain configuration details for the two sample SDKs are shown in Table
2. The RISC-V ISA Variants supported by the sample SDKs are shown in Table 3. These sample SDKs are available for
free download, without technical support, at www.mentor.com/embedded-software/toolchain-services.

https://www.mentor.com/embedded-software/toolchain-services/

w w w. m ento r.co m
6 [8]

Ensuring the Success of Your RISC-V Product with a Commercial-Grade Software Development Ecosystem

CONCLUSION
As RISC-V enters the mainstream of embedded commercial products, a customer-ready software development
ecosystem will be essential for marketplace success. Toolchain commercialization, customization and support are
essential ingredients for deploying commercial-grade open-source based toolchains in SDKs supporting RISC-V
based product development and post release software updates.

Mentor has a 20+ year proven track record in delivering commercial-grade toolchains and toolchain support
services for a wide variety of processor architectures.

For more information on the RISC-V ISA, see the specification published at the RISC-V Foundation website https://
riscv.org/specifications/isa-spec-pdf/ or via the RISC-V area on GitHub https://github.com/riscv.

For more information on Mentor, a Siemens Business embedded solutions go to https://www.mentor.com/
embedded-software/.

TABLE 2. TOOLCHAIN CONFIGURATION FOR THE MENTOR SAMPLE RISC-V SDKS

Description ISA Status

Compiler GCC llvm

Linker GNU ld lld

Debugger GDB GDB (future plans for lldb)

Language Support C, C++ C, C++

Host OS Support Windows, Linux Linux

Target OS Support Bare-metal (RTOS or No OS) Bare-metal (RTOS or No OS)

Target Hardware Support SiFive HiFive Unleashed⁵ Board, Ibex Rocket Core⁶ SiFive HiFive Unleashed⁵
Board, Ibex Rocket Core⁶

TABLE 3. RISC-V ISA VARIANTS SUPPORTED BY THE MENTOR SAMPLE RISC-V SDKS

Variants Board/Core SDK Type ISA Status

RV32IMC
SiFive HiFive

LowRISC Ibex
GCC RV32I + integer Multiplication and division + Compressed instructions

RV64IMAC SiFive HiFive
GCC

LLVM
RV64I + integer Multiplication and division + Atomic instructions +
Compressed instructions

RV64IMAFDC SiFive HiFive
GCC

LLVM

RV64IMAC + integer Multiplication and division + Single-Precision
Floating-Point + Double-Precision Floating-Point + Atomic instructions
+ Compressed instructions

RV32GC QEMU GCC
RV32I + G (integer Multiplication and division + Atomic instructions +
Single –Precision Floating-Point + Double-Precision Floating-Point +
Instruction-Fetch Fence) + Compressed instructions

https://riscv.org/specifications/isa-spec-pdf/
https://riscv.org/specifications/isa-spec-pdf/
https://github.com/riscv
https://www.mentor.com/embedded-software/
https://www.mentor.com/embedded-software/

w w w. m ento r.co m
7 [8]

Ensuring the Success of Your RISC-V Product with a Commercial-Grade Software Development Ecosystem

PRICING REFERENCES:
[1] Western Digital Delivers New Innovations to Drive Open Standard Interfaces and RISC-V Processor

Development. Press Release – December 2018
https://www.westerndigital.com/company/newsroom/
press-releases/2018/2018-12-04-western-digital-delivers-new-innovations-to-drive-open-standard-interfaces-
and-risc-v-processor-development

[2] Xie, Joe. NVIDIA RISC V Evaluation Story. 4th RISC-V Workshop, July 2016
https://riscv.org/wp-content/uploads/2016/07/Tue1100_Nvidia_RISCV_Story_V2.pdf
https://www.youtube.com/watch?v=gg1lISJfJI0

[3] RISC-V will see 146.2% CAGR 2018-2025, forecasts Semico Research, November 2019
https://www.electronicsweekly.com/news/business/146-cagr-risc-v-2025-2019-11/
https://semico.com/content/risc-v-market-analysis-new-kid-block

[4] Asanović, K. and Patterson, D. Instruction Sets Should Be Free: The Case For RISC-V (EECS-2014-146), August
2014
https://people.eecs.berkeley.edu/~krste/papers/EECS-2014-146.pdf

[5] HiFive Unleashed is a trademark of SiFive Inc.
https://www.sifive.com/boards/hifive-unleashed

[6] Ibex is an open-source RISC-V processor design maintained by LowRISC.
https://github.com/lowrisc/ibex

https://www.westerndigital.com/company/newsroom/press-releases/2018/2018-12-04-western-digital-delivers-new-innovations-to-drive-open-standard-interfaces-and-risc-v-processor-development
https://www.westerndigital.com/company/newsroom/press-releases/2018/2018-12-04-western-digital-delivers-new-innovations-to-drive-open-standard-interfaces-and-risc-v-processor-development
https://www.westerndigital.com/company/newsroom/press-releases/2018/2018-12-04-western-digital-delivers-new-innovations-to-drive-open-standard-interfaces-and-risc-v-processor-development
https://riscv.org/wp-content/uploads/2016/07/Tue1100_Nvidia_RISCV_Story_V2.pdf
https://www.youtube.com/watch?v=gg1lISJfJI0
https://www.electronicsweekly.com/news/business/146-cagr-risc-v-2025-2019-11/
https://semico.com/content/risc-v-market-analysis-new-kid-block
https://people.eecs.berkeley.edu/~krste/papers/EECS-2014-146.pdf
https://www.sifive.com/boards/hifive-unleashed
https://github.com/lowrisc/ibex

©2018 Mentor Graphics Corporation, all rights reserved. This document contains information that is proprietary to Mentor Graphics Corporation and may
be duplicated in whole or in part by the original recipient for internal business purposes only, provided that this entire notice appears in all copies.
In accepting this document, the recipient agrees to make every reasonable effort to prevent unauthorized use of this information. All trademarks
mentioned in this document are the trademarks of their respective owners.

F o r t h e l a t e s t p r o d u c t i n f o r m a t i o n , c a l l u s o r v i s i t : w w w . m e n t o r . c o m

Obtain the Required Connectivty for Endpoint/IoT Devices While Keeping the Total Cost in Check

MGC 05-20

