
W
H

I
T

E
P

A
P

E
R

w w w . m e n t o r . c o m

MULTICORE SYSTEM MANAGEMENT:
HYPERVISOR OR MULTICORE
FRAMEWORK?

MENTOR EMBEDDED PLATFORM SOLUTIONS

E M B E D D E D P L A T F O R M S O L U T I O N S

w w w. m ento r.co m
2 [5]

Multicore System Management: Hypervisor or Multicore Framework?

With increasing application of multicore to embedded devices, a number of important decisions are necessary to
ensure an optimal design. One such decision concerns the overall control and management of a multicore system.
Is a hypervisor required or is a multicore framework a better solution?

MULTICORE SYSTEMS
There are a variety of reasons why an embedded system may be implemented using multiple cores. It may be to
simply attain more processing power, but it is most likely to allow functional segmentation of a design in a number
of ways. This latter motivation results in designs being configured as Asymmetric MultiProcessing (AMP) systems.

An AMP system may be constructed from any combination of core architectures; all the cores may be identical or
there may be a rich mixture of core types that includes conventional processing units as well as specialized cores, like
digital signal processors (DSPs) for instance. Each core executes independently in an AMP architecture, with or without
an operating system. Each core’s operating system may be selected on the basis of the required functionality.

There are some specific challenges with an AMP design:

 ■ An inter-core communication facility is most likely required.

 ■ There may be safety/security issues that require the cores to be protected from one another.

 ■ Boot order – the sequence in which the software on each core starts – may be important to avoid
synchronization and security issues.

 ■ Debugging the disparate workloads running on the potentially heterogeneous cores can be quite challenging.

Although the cores in an AMP system are independent, these challenges indicate that some overall control facility
is necessary. Broadly there are two options:

1. A hypervisor. A complex software component that runs across all the cores.

2. A multicore framework. A software component allowing enablement for AMP systems which runs on each
core.

It should be noted that multicore applications can be implemented using a symmetric multiprocessing (SMP)
enabled operating system, but that approach does not allow for independent workloads to be executed on
different cores, and also does not support heterogeneous cores.

HYPERVISORS
A hypervisor is a fairly complex, versatile software component that provides a supervisory capability over a number of
operating systems, managing CPU access, peripheral access, inter-OS communications and inter-OS security. A
hypervisor may be used in a number of ways. For example, multiple operating systems may be run on a single CPU to
protect an investment in legacy software, although with the growth of multicore processors this is becoming rarer.

Alternatively, hypervisors can be used in embedded applications in AMP designs, where supervision of inter-core
communication and allocation of peripherals to specific cores is needed. A hypervisor can additionally take care of the
boot sequence and manage shared peripheral access. One of the main advantages of using a hypervisor is that if an
operating system ‘crashes’ it will not affect execution of workloads on other cores, and in some cases the hypervisor
can even reboot that operating system without requiring a reboot of the device. It is, of course, very advisable to
utilize a hypervisor that is specifically designed for use in embedded applications for better performance.

w w w. m ento r.co m
3 [5]

Multicore System Management: Hypervisor or Multicore Framework?

Although it is possible to develop a hypervisor that will enable all of the required separation and virtualization
features in software, which is quite difficult and is unusual these days. Today hypervisors are designed to use
underlying virtualization features present on most multicore processors.

PROS AND CONS OF HYPERVISORS

Hypervisors have advantages and disadvantages compared with other solutions.

PROS

 ■ Great flexibility enables efficient resource sharing, dynamic resource usage, low latency, and high bandwidth
communication between VMs

 ■ Strong inter-core separation

 ■ Enables device virtualization and sharing

 ■ Ability to assign ownership of peripherals to specific cores

CONS

 ■ Only work on a homogenous multicore device (i.e. all cores are identical)

 ■ Significant code footprint

 ■ Some execution overhead

 ■ Require hardware virtualization enablement in the processor

MULTICORE FRAMEWORKS
Because of their separation, management and sharing capabilities, hypervisors have far more functionality than
many embedded designs demand – they can be overkill. To address this issue, a few embedded runtime vendors
developed an alternative that was specifically engineered to support an AMP multicore system: the multicore
framework.

Frameworks are designed very specifically to support the multicore application, providing just the key functionality:
boot order control and inter-core communications. The result is that a framework loads a system with a much lower
overhead and can be run on much more basic systems. Although each core in an AMP design probably runs an
operating system, one or more cores may be “bare metal” – i.e. running no OS at all. A multicore framework can
accommodate this possibility.

INTER-PROCESSOR COMMUNICATION (IPC)

Once the remote processor OS and application stack are running, many use cases will require communication with
other parts of the system. The Mentor Embedded Multicore Framework provides a cleanroom implementation of a
remote processor messaging framework feature called rpmsg to establish a communications channel between the
master operating system and the remote operating systems. In this way, data can be passed back and forth
between the two in an inter-processor communication channel.

The transport layer that enables both remote processor lifecycle management and inter-processor communication
is VirtIO. VirtIO is a virtualization standard for high performance input/output device drivers widely adopted in
virtualized Linux® environments.

w w w. m ento r.co m
4 [5]

Multicore System Management: Hypervisor or Multicore Framework?

REMOTE PROCESSOR LIFE CYCLE MANAGEMENT

Assuming control over a remote processor, and then starting or stopping an OS and/or application stack within that
remote processor, is referred to as remote processor (remoteproc) lifecycle management. The Linux community has
adopted a remote processor framework for managing this scenario. Remoteproc allows a master operating system
to bring up other operating systems on other cores.

The remoteproc feature within the Mentor Embedded Multicore Framework allows remote processor
interoperability between Mentor® Embedded Linux®, Nucleus® RTOS, and Bare Metal Environments (BME) and Linux
and RTOS products from other vendors. A key benefit to remote processor lifecycle management is reduced power
consumption. The remote core stays in a low power state when not in use. Only after remoteproc is used to bring
up the remote core and deploy the necessary firmware does the remote core draw any notable power.

PROS AND CONS OF MULTICORE FRAMEWORKS

Multicore frameworks have advantages and disadvantages compared with other solutions.

PROS

 ■ Provides the minimally required functionality for some applications

 ■ Modest memory footprint

 ■ Minimal execution time overhead

 ■ Can work on heterogeneous multicore devices (i.e. all cores do not need to be identical)Support bare metal
applications

CONS

 ■ The core workloads are not isolated from each other

 ■ Can be more difficult to control boot sequence, and to debug

OPENAMP

Although some multicore frameworks are proprietary, some standards have been proposed that govern their
functionality, interfaces etc. A popular example of such a standard is OpenAMP.

There are two key functionalities in OpenAMP:

1. Life cycle management using remoteproc. This facilitates control of boot order etc.

2. Inter-core communications using RPMsg.

A current reference implementation of
the OpenAMP standard is available on
GitHub. Mentor Embedded Multicore
Framework (MEMF) and Mentor
Embedded Multicore Framework Cert
are proprietary implementations of the
OpenAMP standard. Extensions to the
standard include additional
functionality to support Linux as a
Remote, Large Buffer, Zero Copy, Proxy
support for Ethernet and additional
development tools.

©2020 Mentor Graphics Corporation, all rights reserved. This document contains information that is proprietary to Mentor Graphics Corporation and may
be duplicated in whole or in part by the original recipient for internal business purposes only, provided that this entire notice appears in all copies.
In accepting this document, the recipient agrees to make every reasonable effort to prevent unauthorized use of this information. All trademarks
mentioned in this document are the trademarks of their respective owners.

F o r t h e l a t e s t p r o d u c t i n f o r m a t i o n , c a l l u s o r v i s i t : w w w . m e n t o r . c o m

Multicore System Management: Hypervisor or Multicore Framework?

MGC 08-20

MIXED SAFETY-CRITICALITY SYSTEMS
A mixed safety-critical system is a system that requires the execution of several applications of different safety
integrity levels (SIL) or different criticalities, such as safety-critical and non-safety critical, on a single SoC. Both a
hypervisor and a multicore framework can support this type of configuration.

A hypervisor does this by certifying the hypervisor itself. The virtual machines can then have different criticality
levels running with the certified hypervisor. The separation is provided by the certified hypervisor, which typically
uses underlying hardware virtualization and separation features on the SoC.

A multicore framework leverages other
hardware-assisted separation capabilities
provided by some SoC architectures to
obtain the required separation between the
safe domain and the non-safe domain. This
includes the separation of processing blocks,
memory blocks, peripherals, and system
functions. The multicore framework provides
enhanced bound checking to ensure the
integrity of shared memory data structures. It
also provides interrupt throttling and polling
mode to prevent interrupt flooding. It is even
possible to use a non-safety certified
hypervisor along with a mixed criticality
enabled multicore framework as shown in
the following picture.

CONCLUSIONS
Deciding to use a hypervisor or a multicore framework, or both, to control and manage a multicore system is a
critical architecture decision. The final decision will depend on the specific application requirements and the use
case for the device. The options should be considered as complementary solutions to unlock the power of a
multicore SoC. The availability and understanding of these choices allows the designer to achieve a more optimal
multicore design.

