
1
IAR Systems White Paper     |     The Developer’s Journey to a Secure Embedded System

SECURE EMBEDDED SYSTEMS: 
A DEVELOPER’S JOURNEY

SHAWN PRESTRIDGE, IAR SYSTEMS 

Properly implemented security starts at the beginning of the 
development process. And continues throughout the entire design 
cycle, all the way to manufacture.

Overview
Security is a significant problem in the embedded space, particularly in the industrial, automation, 
and automotive sectors. There are a host of reasons for these security lapses. However, many 
could have been avoided had the developer started his design on the correct path right from 
the start. Attempting to fix security issues later, especially after a product has shipped, is 
not recommended.

If we make security part of the developer’s DNA, many issues can be avoided. But what does 
that mean? It means that security must be “front of mind” through every phase of the design 
process—right from product/idea inception. Such thinking requires that the developer check all 
the appropriate boxes along the way. Those layers or stages the developer will go through include:

•	 HW Root of Trust (RoT) and Secure Boot Services
•	 RTOS and Core Services
•	 Communications and Data Security
•	 Applications Security
•	 Authentication and Authorization



2
IAR Systems White Paper     |     The Developer’s Journey to a Secure Embedded System

The Starting Point:  
Who and Where
Before laying pencil to paper, so to speak, developers must 
understand the legislative issues associated with the 
deployment geography of their end products. In other words, 
the region in which the end product will be deployed could 
change how security is deployed, because different regions 
have different rules when it comes to security.

Next is to determine the profile of the typical user and the 
use cases the end product may be subjected to. Where and 
how often will the product connect to the Internet, and what 
other people and/or devices have similar access? How will 
updates occur? It may not be possible to always know the 
answers to these questions for all products, as use cases 
change over time. For that reason, developers should 
always err on the more conservative side, and assume the 
worst-case scenario.

One great starting point is a framework that has been laid 
out by the IoT Security Foundation, whose charter is to 
secure the IoT by composing and maintaining a comprehensive 
compliance framework of recommended steps for the creation 
of secure IoT products and services. That framework consists 
of a 13-step program of best practices that serve as a guide 
for developers. Most developers won’t follow all 13, but the 
more you can do, the more secure your system will be.

IP Protection
Your IP may be the most important thing that your company 
owns. If someone were to steal your IP, they could recreate 
your products or some portion of your products or the 
functionality that goes along with it. Or, a potentially worse 
scenario could be that your IP is altered within a device. 
Effects from that situation could be devastating, from both 
liability and branding perspectives.

It could potentially be even more difficult to protect your IP 
when your device is connected to the IoT, either with a wire 
or wirelessly. In this scenario, you may not have control 
over what’s plugged into the network, and as the saying goes, 
“you are only as strong as your weakest link.”

A big part of IP protection is protecting your application. 
That could be partly in hardware and it could be partly in 
software/firmware. In either case, the first step to security 
(and you’ll hear this again and again) is creating high-quality, 
secure code right from the beginning. 

One way to make that happen is to take advantage of IAR 
System’s C-Trust security tool. C-Trust works hand-in-hand 
with the company’s popular Embedded Workbench tool suite. 
When you start your project, you enable the security setting 
within the tool, which adds the encryption keys and denies 
version rollbacks. The image that’s generated is encrypted, 
and that’s the majority of what the developer needs to do, at 
least at this point.

Secure Contexts
A primary goal of secure contexts is to prevent attackers 
from accessing the APIs of that industrial platform; again, 
extra care should be taken for IoT platforms. In doing this, 
the contexts capture all aspects of the system, especially 
the parts that need to be locked down. They also represent 
the minimum standards of authentication and confidentiality.

Keeping with the popular theme, those secure contexts are 
inserted at the initial design stages. In theory at least, that 
should keep the system secure all the way through to 
manufacture, with the end product being produced exactly 
as the manufacturer intended.

The secure context defines the trusted execution environment’s 
complete configuration. With C-Trust, developers can quickly 
apply security contexts to application development to ensure 
consistency throughout the product development. 



3
IAR Systems White Paper     |     The Developer’s Journey to a Secure Embedded System

Specifically, C-Trusts simplifies:

•	 complex cryptographic device identities and  
	 ownership structures
•	 creation of a root-of-trust, ensuring device 			 
	 authentication, authorization, and attestation
•	 secure boot manager extensions
•	 application of patches and updates
•	 identity delegation for onboarding into cloud 			 
	 infrastructure applications

If implemented properly, these security contexts provide the 
foundation for a secure platform.

Secure Boot
Just as we’ve discussed that your design must start off on 
the right (secure) foot, that’s also the case for when your 
device boots up. If the booting process is not secure, you 
can assume that your entire design looks “unlocked” to the 
outside world.

The literal definition of secure boot is that it’s a mechanism 
for ensuring the integrity of firmware and software 
running on a computing platform. It’s vital that the 
platform guard against malicious attacks or even unauthorized 
software updates that could happen prior to the operating 
system launching.

During the development process, an authentication key is 
created. To enable a secure boot, the firmware is signed 
with that key and verified in the end product. Each time the 
device boots up, it verifies the firmware signature using the 
matching key.

The secure boot manager, which is responsible for the 
booting process, acts like a “trust anchor.” Note that, during 
the boot process, the importance of running secure code 
cannot be emphasized enough. That secure boot manager 
must run every time the system boots and should never be 

altered. It has the important job of ensuring that you’re 
always running legitimate code. Whenever firmware updates 
come in, it’s up to the boot manager to ensure that they are 
legitimate and authentically signed.

The process of developing a secure boot manager is integrated 
into the C-Trust security tool. During development, the tool 
will provide low-level device services to manage access to 
all devices.

Secure Provisioning
Secure provisioning helps ensure that the software released 
by the development team is exactly the same as the software 
that’s installed in the end devices. Any changes that occur at 
this point can be detrimental to the functionality of the 
device. And it’s difficult to know if those changes came from 
a verified source. Such protection is needed for brand protection 
and for the safety and security of end users. 

While we often just think of software provisioning in terms 
of the deployment part of software delivery, it’s actually 
much more than that. Secure software provisioning also 
helps manufacturers quickly and reliably manage the various 
aspects of the platform, which could include information 
about systems, users, and applications. The full provisioning 
process could also include parts of the test, quality assurance, 
and reporting stages.

The provisioning can be an arduous task, as it encompasses 
device configuration, including identity and key provisioning. 
However, C-Trust greatly simplifies that process. Through a 
semi-automated process, the tool securely transfers the 
complete design to a production environment, first for 
prototyping and later for mass production. In the transition, 
the secure development keys are replaced by secure 
production keys, during the creation of a final, secure 
production package. C-Trust automatically imports these 
production packages.



4
IAR Systems White Paper     |     The Developer’s Journey to a Secure Embedded System

Conclusion
The bottom line is that security needs to be prioritized to the top of the developer’s checklist. 
In fact, it must rule the list, and be so ingrained into a developer’s DNA, that it’s something that 
he/she just does without thinking that it’s an extra step. The best way to do that is to make it 
as easy as possible, and remove all of the guesswork for the developer.

That’s where C-Trust shines. As stated earlier, it’s a security development tool that works as 
an extension to IAR’s popular Embedded Workbench tool suite. Hence, you operate in an 
environment in which you’re already very familiar. The result is the delivery of secure, 
signed, and encrypted code with pre-baked security context profiles for IP protection and 
production control.

In addition to the Embedded Workbench integration, C-Trust offers support for most of the popular 
microcontrollers, including those from ST, Renesas, Microchip, and NXP. And new devices are 
continually being added. So there’s no excuse not to be fully compliant. Make security part of 
the developers’ DNA. Security from inception.

For questions, please email fae@iar.com 


